
Chagas J. A. R.; Waldmann J.                                                                           Nonlinear filtering in a simulated three-axis …  

Presented at the VI Simpósio Brasileiro de Engenharia Inercial, Rio de Janeiro, Brazil, October, 2010 
 

Journal of Aerospace Engineering, Sciences and Applications, May – Aug. 2010, Vol. II, No  2 37 

NONLINEAR FILTERING IN A SIMULATED THREE-AXIS SATELLITE 

ATTITUDE ESTIMATION AND CONTROL TESTED 

 

Ronan Arraes Jardim Chagas  

 
Divisão de Engenharia Eletrônica, Departamento de Sistemas e Controle 

Instituto Tecnológico de Aeronáutica, São José dos Campos, São Paulo, Brasil 

E-mail: ronan.jardim@gmail.com 

 

Jacques Waldmann 

 
Divisão de Engenharia Eletrônica, Departamento de Sistemas e Controle 

Instituto Tecnológico de Aeronáutica, São José dos Campos, São Paulo, Brasil 

E-mail: jacques@ita.br 
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1   Introduction 

 
Nonlinear estimation based on extended Kalman, unscented, and particle filtering is investigated to gauge the 

performance tradeoff among attitude and angular rate estimation accuracy, robustness to uncertain initial 

conditions, and computational workload. This investigation has been motivated by an experimental setup in the 

LabSim at INPE, where a 3-axis, air-suspended table has been instrumented as a testbed for designing and 

testing satellite attitude control algorithms and systems integration. The apparatus was used as an educational 

tool in a demonstration to graduate students and stirred up such an interest that inspired the effort to simulate a 

model of a similar testbed for the evaluation of nonlinear estimation algorithms and their feasibility for actual 

space applications, specifically the attitude control system of the low-cost ITASAT university satellite. 

 

The simulated table neglects the actual mass unbalance and corresponding pendulous effect due to gravity 

torque. This inconvenience can be circumvented in the application of the results by careful table mass 

distribution. Sun sensors on board an orbiting satellite provide a reference direction for attitude estimation and 

control. This function can be simulated on the ground by use of accelerometers measuring the local vertical, 

given by the reaction to the gravity vector, and assuming the horizontal acceleration is negligible. Hence, one 

requirement for the control system is that it should align the table with the local horizontal plane. Hence, the 

table presents a sensor suite composed of two accelerometers, and in addition to that one 3-axis magnetometer. 

The latter is a means to measure on board the required additional reference direction, namely the local 

geomagnetic field, which is also provided by an external, horizontally aligned, ground-fixed 3-axis 

magnetometer. The actuator suite is composed of a momentum wheel for azimuth control Carrara and Milani 

within 1° relative to a desired direction, and compressed air nozzles for on-off torquing the table towards 

alignment within 0.5º relative to the local horizontal plane. Notice that the focus is on nonlinear attitude and 

angular rate estimation. Therefore, the control strategy has been devised making use of the usual linearized 

dynamics approach with feedback of the state estimate. 

 

In addition to recent published work on extended Kalman and unscented filtering Chagas and Waldmann (2010), 

a third nonlinear estimator has been designed and tuned to determine table angular rates, Euler angles, and 

momentum wheel speed with respect to the table: a regularized particle filter. Robustness to model mismatch has 

been performed by neglecting momentum wheel friction and back-emf coefficients, mass unbalance, i.e. inertia 

products, and accelerometers biases in the estimator design. The norm of the angle estimation error about the 

error Euler axis and of the angular rate vector estimation error have been employed for performance evaluation 

of the nonlinear estimators. 
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2   System model 

 
The mathematical system model is identical as the one built at Chagas and Waldmann (2010), but it is presented 

here for the sake of completeness. 

 

A. Coordinate Frames 

 

Three coordinate frames have been used to derive an adequate model. The first one is the body-fixed coordinate 

frame, or {Xb, Yb, Zb}, which is attached to the table with the Z axis perpendicular to the table plane and points 

upward. The second coordinate frame is the desired reference frame, or {Xd, Yd, Zd}, which is in alignment with 

the external magnetometer axes. Both b and d frames are shown in Fig. 1. The rotation sequence has been 

parameterized by Euler angles  ,   and  , respectively about body axes Zb, Yb, and Xb, thus rotating a vector 

representation from the reference frame basis to the body frame one. Note that here the inertial coordinate frame 

neglects Earth’s rotation rate. 

 

The reference frame has been useful for comparing the built-in magnetometer measurements with respect to the 

external magnetometer data. Additionally, a horizontal coordinate frame, or {Xh, Yh, Zh}, has resulted from 

rotating the body-fixed, table coordinate frame with the above   and   Euler angles about Xb, and Yb axes, 

respectively. The resulting horizontal frame is rotated by angle   about the local upward vertical with respect to 

the desired reference frame. This is shown in Fig. 2. 

 

 
 

Figure 1. Table reference (left), and desired frame (right) 

 

 
 

Figure 2. Horizontal frame 

 
B. Sensors 

 

The air-suspended table relies on three sensors for attitude estimation: two accelerometers and one 

magnetometer. The accelerometers are used to estimate the local vertical, and thus align the table with the 

horizontal coordinate frame. Data from the built-in magnetometer, called M1, has been compared with the output 

of the external magnetometer, called M2, to determine the error with respect to the reference azimuth direction 

about the local vertical.  

 

The two accelerometers measure Xb ( 1,bAsp ), and Yb ( 2,bAsp ) components of specific force due to gravity’s 

reaction in the body-fixed, table coordinate frame, as in Eq. 1: 

 



Chagas J. A. R.; Waldmann J.                                                                           Nonlinear filtering in a simulated three-axis …  
 

 

Journal of Aerospace Engineering, Sciences and Applications, May – Aug. 2010, Vol. II, No  2 39 

        















 







































)cos()cos(.81,9

)sin()cos(.81,9

)sin(.81,9

81,9

0

0

.

3,

2,

1,






b
d

b

b

b

b

Asp

Asp

Asp

DAsp   (1) 

 

where b
dD  is the direction cosine matrix (DCM) that transforms a vector representation from the reference frame 

to the table coordinate frame. Accelerometer bias and measurement noise have not been considered in Eq. 1, but 

they have been added to validate the closed-loop control and the distinct estimators. 

 

Both magnetometers have been assumed to be located in such way that the local magnetic field vector is the 

same at both locations. Otherwise, comparing their respective measurements would not be feasible for tracking 

the reference azimuth direction thus compromising accuracy when estimating Euler angle  . 

 

The magnetometer on board the air-suspended table outputs a vector measurement, bM2
, which called for 

representation in the horizontal coordinate frame. That has been done with the estimated Euler angles 
̂

 and ̂  

to approximate the DCM h
bD , as in Eq. 2. 

 

        b
b
dh M2DM2 .    (2) 

 

One can compare h1M and bM2 to approximate the desired Euler angle , which is the angle about the local 

vertical that the horizontal frame must be rotated to be in alignment with the reference frame, thus yielding Eq. 

3: 

 

        h,2d,1h,1d,2 M2.M1M2.M1)sin(    (3) 

 

where ydMx ,  is the y-th component of the unit-norm measurement vector produced by the x-th magnetometer. 

Therefore, the sensor suite described here allows for the measurement of the three Euler angles that rotate the 

desired reference coordinate frame into alignment with the table frame. 

 

C. Actuators 

 

A set of three actuators is used to control the air-suspended table about its three axes: two pneumatic actuators 

for the Xb and Yb axes, and one reaction wheel for Zb. The pneumatic actuators are controlled by a pulse width 

modulation (PWM) signal that determine the on-off duty cycle. Additive white noise has been included in the 

actuator model to account for the small turbulence at the nozzles when torquing the table. Three parameters are 

called for in such a model: the torque magnitude that is applied on the table by the nozzles when the actuator is 

on, the frequency of the PWM carrier, and the actuator noise variance. 

 

 
 

Figure 3. Reaction wheel block diagram 

 
The reaction wheel was modeled as in Sidi (1997) for the purpose of validating estimation and control 

algorithms. This ground-truth model has included wheel motor dynamics, current and voltage limits, viscous 

friction, back-emf, and the maximum angular rate limit. Zero-crossing dead-band has been discarded from this 

model because it can be easily avoided by assuming that the reaction wheel can be initialized with non-zero 

angular rate, hence becoming a biased momentum wheel, and such an initial condition does not affect the results. 
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The corresponding block diagram can be seen at Fig. 3, where mI  is the wheel inertia, 3,mI  is the table inertia 

around the Zb axis, mK , vK , mR  and B  are electromechanical wheel parameters, wT  is the commanded torque, 

and 3u  is the real torque. 

 

The wheel angular rate with respect to the air-suspended table can be measured by an embedded tachometer in 

the device. This measurement is tac and it is composed of wb
b 3,  plus white-Gaussian noise. 

 

D. Dynamic System Model 

 

The dynamic system model was adapted from Sidi (1997). The table inertia matrix without the reaction wheel 

bm,I , and the reaction wheel inertia matrix bw,I , both represented in the body-fixed table coordinate frame b, are 

shown in Eqs. 4. 
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The table angular rate vector with respect to the inertial frame represented in the b coordinate frame bi
bω , and the 

reaction wheel angular rate vector with respect to the table represented in the same coordinate frame wb
bω  are 

shown in Eqs. 5: 
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Based on a Newtonian approach, the dynamic model is represented in the table coordinate frame b as in Eq. 6: 
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Where bd ,T  is the disturbance torque, bc,T  is the control torque output by the pneumatic actuators and shown in 

Eq. 7, bH is the total angular momentum of the table and the reaction wheel as in Eq. 8, and 3u  is the actual 

torque acting on the reaction wheel as shown at Fig. 3. Unbalance torque due to gravity has been disconsidered 

since the testbed is assumed to have undergone a balancing procedure to align its mass center with the table air 

bearing. 

 

         Tbcbcbc TT 02,,1,,, T   (7) 

 

        
wb
bbw

bi
bbwbmb ωIωIIH .).( ,,,    (8) 

 

The table angular rate vector bi
bω  relates to the attitude kinematics given by the Euler angles  ,  , and   time 

derivatives according to Eqs. 9: 
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Hence, the ground-truth model has been constructed using Eqs. 6, 8, 9, and the reaction wheel model seen in Fig. 

3. 

 

E. Model States and Measurement Vector 

 

Analyzing the model equations in the previous section, a vector state with seven real components has been 

defined: the three Euler angles that rotate from the reference frame to the body-fixed table frame, the three 

components of the angular rate vector of the table with respect to the inertial frame, and the reaction wheel speed 

with respect to the table. Static friction torque in the vicinity of the reaction wheel zero speed yields a steady-

state pointing error about the Zb axis. Therefore, the integral of such pointing error, shown in Eq. 10, has been 

selected to augment the state vector as the eighth state component as seen in Eq. 11. 
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The reference state is given by Eq. 12. Thus, the controller should align the table with the local horizontal plane, 

and likewise the on-board magnetometer measurement components with those of the external magnetometer. 

 

         Tref 00000000x    (12) 

 

Recalling Equation 3, the measurement vector concatenates accelerometers, magnetometers and tachometer data 

as in Eq. 13. 
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3   Control strategy 

 
The main focus is to investigate and compare the performance of three nonlinear estimators. Consequently, a 

straightforward control technique based on state feedback has been used. Firstly, the system has been linearized 

around refx . As a result, the horizontal plane dynamics given by state components  ,  , bi
b 1, and bi

b 2,  has 

become decoupled from the vertical dynamics embedded in the remaining state components. Such decoupling 

allowed for the design of two separate state feedback control laws for the horizontal and vertical dynamics, 

respectively. Then, the closed-loop poles in Eqs. 14 have been located to avoid actuator saturation while still 

yielding an acceptable settling time. 
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Additionally, each horizontal axis control is turned off when the corresponding Euler angle error norm is less 

than 0,25°, and the control is switched back on when this error is higher than 0,5°. This avoids high-frequency 

switching in actuators when the system is near the reference. 
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4   Estimators 

 
Given the nonlinear model, an extended Kalman filter (EKF), an unscented Kalman filter (UKF) and a 

regularized particle filter (RPF) have been compared to gauge the performance in terms of estimation accuracy 

and computational load. This section describes details about the implementation of the estimators. The filters 

assumed a set of model simplifications. The disturbance torques have been considered nonexistent, the inertia 

matrices of table and reaction wheel considered diagonal, i.e., without inertia products, and the reaction wheel 

friction and back-emf have been neglected, i.e. 3uTw  . 

 

The continuous mathematical model, omitting model and measurement noise, can be written as in Eqs. 15: 

 

        )(),( xhyuxfx      (15) 

 

where u  is a vector containing commanded torques for both pneumatic actuators and the reaction wheel, and 

(.)f  is a function concatenating Eqs. 4 to 10 considering the aforementioned simplifications. 

 

The particle filter algorithm needs a discrete system model. The discretization can be done, also omitting model 

and measurement noise, using Euler approximation as in Eqs. 16 Ristic et al.(2004): 
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where   denotes the sample time. 

 

The mathematical model of the real system does not have any approximation; it has been built using Newton’s 

law. So it doesn’t have any modeling noise. However implementation artifacts contribute to the mismatch 

between the ground-truth model and the one embedded in the estimators. These errors, including those arising 

from numerical round-off, are merged into a virtual, additive, white noise sequence approximated by a Gaussian 

probability density with zero mean and a tuned covariance. 

 

A. Extended Kalman Filter 

 

Regarding Eqs. 16 augmented with respective additive noise, the EKF performs the linearization of the dynamics 

about the updated state estimate, whereas the linearization of the measurement equation is about the propagated 

state estimate Ristic et al.(2004). The continuous-discrete approach for the EKF has been used here. Being a 

slightly different algorithm with respect to the usual implementation, the approach offers improved performance 

in continuous systems than the discrete approach, because propagation is done by directly integrating the 

continuous system model equations using, for example, the 4
th

 order Runge-Kutta numerical integration 

algorithm, whereas the measurements are discrete in time. Propagation is shown in Eqs. 17: 
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where ),( uxJ f  is the Jacobian matrix of the function (.)f  at the point ),( ux , and Q(t) is the continuous-time 

model noise P.S.D. matrix. 

 

The update step is performed as usual, and the above EKF has been implemented previously Chagas and 

Waldmann (2010). 

 

B. Unscented Kalman Filter 

 

The UKF uses the unscented transform to achieve improved estimation relative to the EKF in case Eq. 15, in our 

case augmented with additive noise, is highly nonlinear. The unscented transform calculates a set of σ-points that 

are propagated using the nonlinear model and measurement equations to estimate the mean and covariance of the 

stochastic state vector Ristic et al.(2004). Unlike the EKF, it does not need computation of Jacobians. 
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Nevertheless, computing σ-points requires a great amount of computational effort, which makes this method 

slower than the EKF in almost every practical situation. The UKF has been also used with the continuous-

discrete approach described in Särkkä. The UKF has been also implemented in Chagas and Waldmann (2010). 

 

C. Regularized Particle Filter 

 

Particle filters perform sequential Monte Carlo estimation based on point masses, also called particles, to 

represent the a posteriori state probability density. Each particle is located in a point in the state-space and its 

corresponding weight measures its importance with respect to the current measurement. There are several 

algorithms designed to execute this method Ristic et al.(2004), Doucet (1998). Each one has some advantages 

but also introduces a weakness, so the choice is problem-specific. The most common choice due to its 

straightforward implementation is the SIR (Sequential Importance Resampling) filter, also called bootstrap Ristic 

et al.(2004). 

 

The generic structure of a particle filter consists in the generation of a high number of samples from an 

importance probability density that should correctly describe the probability density of the state at instant k given 

the measurement and the set of particles at instant k-1. Then, each particle is weighed according to the 

measurement probability density, and the set of particles and weights at instant k should provide an estimate of 

the state a posteriori probability density. Thus, one can generate the state estimate by, for example, computing 

the mean of the estimated a posteriori state probability density, which provides an approximation to the 

minimum mean square error state estimate. 

 

The importance probability density choice is crucial. However, the optimal one, which minimizes the importance 

weights variance, is available only in restrictive problems Ristic et al.(2004). In most cases, a widely used 

approximation is expressed in Eq. 18 Ristic et al.(2004), Doucet (1998): 
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where (.)q  is the importance probability density and i
k 1p   denotes the i-th particle at instant k-1. Sampling from 

this p.d.f is carried out by sampling from the p.d.f. of the model noise and applying the nonlinear model 

equations, i.e. Eqs. 16, using i
k 1p  as the previous state. 

 

Particle filters also need to perform a resampling stage, which has been devised to avoid wasting computational 

resources on low-weight, unimportant, particles. Basically, it eliminates particles with low weight and multiplies 

particles with higher weight. There is a myriad of algorithms for the resampling stage. This work has used the 

systematic resample described in Ristic et al.(2004) with a slightly modification proposed in Doucet (1998). The 

original SIR algorithm performs resampling at every iteration, but it is only needed when the particles become 

severely degraded, i.e., only few particles presenting a significant normalized weight. Therefore, the resampling 

stage is performed only when index effN  shown in Eq. 19 is smaller than a threshold named thresN .  
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where N  is the number of particles and i
kw  denotes the normalized weight of the i-th particle at instant k. For 

this work, thresN  has been set to N9.0 . 

 

Finally the SIR algorithm at instant k for this problem can be written: 

 

        ]},[{ 1
N
i

i
k

i
k w p  = SIR ],},[{ 111 k

N
i

i
k

i
k w yp   

 

 FOR i = 1 : N 

o Draw ),0(~ Qv N  (sampling from model noise p.d.f) 

o vuppp   ),( 111 k
i
k

i
k

i
k f  

o Calculate )|(~ i
kk

i
k pw py  

 END FOR 

 Normalize weights generating ]}[{ 1
N
i

i
kw   



Chagas J. A. R.; Waldmann J.                                                                           Nonlinear filtering in a simulated three-axis …  
 

 

Journal of Aerospace Engineering, Sciences and Applications, May – Aug. 2010, Vol. II, No  2 44 

 Calculate effN  
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where )|( i
kkp py  is a Gaussian p.d.f evaluated at ky  with mean )( i

kph , and covariance R . 

 

For this work, the above algorithm had an acceptable performance at steady-state with a low number of particles. 

However, it always diverges when a disturbance is applied even with a high number of particles. It is caused by a 

known phenomenon called particles collapse Ristic et al.(2004). The model noise here is very low, so the 

particles tend to stay in a very close state-space region, which decrease the diversity. When a disturbance occurs, 

the weights become very small and numerical round-off often set them all to 0. At this point, the filter should be 

fully reinitialized to amplify the diversity, but it was found that this process severely degraded estimation 

performance. The literature provides a set of modified algorithms that tries to minimize particle collapse of SIR 

filter Ristic et al.(2004). Here, it has been used the regularized particle filter (RPF) to circumvent the problem. 

This approach jitters the particles at every resampling stage, which helps to increase the diversity. The new 

algorithm for this stage is: 
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where opth  is calculated as in Eq. 20 Ristic et al.(2004): 
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where nx  is the number of state vector components. 

 

It is well known that the number of particles for a good estimation quality increases exponentially with the 

number of states. So, for the RPF implementation, the eighth state has been suppressed from the filter and the 

integration of pointing error about Z-axis has been performed with the rectangle rule using   angle estimates 

from the filter. 

 
5   Simulations 

 
A. Parameters 

 

The simulations have been carried out using the same parameters from Chagas and Waldmann (2010). Ground-

truth inertia matrices of the table and reaction wheel have included inertia products to account for a residual 

mass unbalance. Equation 21 shows the measurement noise covariance matrix used in all filters: 

 

        )500/.481,9/81,9/( 222
.

2
. tacmagaccelacceldiag R    (21) 

 



Chagas J. A. R.; Waldmann J.                                                                           Nonlinear filtering in a simulated three-axis …  
 

 

Journal of Aerospace Engineering, Sciences and Applications, May – Aug. 2010, Vol. II, No  2 45 

where (.)diag  means a diagonal matrix. Magnetometer noise is not Gaussian on account of the measurements 

mathematical manipulation. This can be seen analyzing Eq. 3. Nevertheless, it has been verified by an ad-hoc 

procedure that its probability density is very similar to a Gaussian with zero mean and the variance described in 

Eq. 21. 

 

The model noise covariance needed to be separately tuned for each filter to avoid divergence during the 

simulation. The selected values for the EKF, UKF and RPF are in Eqs. 22: 

 

        
  4

8888

10.1000100100100555

.45,0.5,0
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rpg

xuscxext

Q

IQIQ
    (22) 

 

The number of particles in the RPF has been set to 610.2 . 

 

B. Filter Performance 

 

Two metrics have been defined to gauge filter performance. The first computes the rotation angle about the  

 

 
 

Figure 4. Scenario 01 results – Extended Kalman Filter 

 
Euler axis that is related to the attitude estimation error at each iteration as in Eq. 23. It has been used to 

ascertain the attitude estimation accuracy of each filter. The second computes the norm of the angular rate vector 

estimation error at each iteration as in Eq. 24. 
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        )ˆ()ˆ( kk|k

t

kk|kk,error     (24) 

 

where 
b

kkd |,D̂  and 
b
dD  are the estimated and ground-truth direction cosine matrices, respectively, at instant k that 

rotate from the reference coordinate frame to the table coordinate frame, and kk |ω̂  and kω  are the estimated and 

ground-truth table angular rate vectors, respectively, at instant k. Both metrics have been computed at each 
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iteration over a large number M of Monte Carlo simulations. At the end, the mean and standard deviation have 

been computed. 

 

C. Results 

 

For the EKF and UKF simulations, 100 Monte Carlo simulations have been carried out in a time interval from 0s 

to 100s with a filter step of 0,01s. For RPF, only 30 Monte Carlo simulations have been performed and the step 

has been set to 0,05s because of time constraints. The initial ground-truth state vector has been kept fixed and 

given in Eq. 25 with SI units. For the simulations, the filter initial estimate and the particles have been set equal 

to the initial ground-truth state plus a random vector in which each component was a random Gaussian variable 

with zero mean and variance 0.1. 

 

          180/.002332030250 x [SI]   (25) 

 

An unexpected, deterministic disturbance torque has been applied at t=45s with 0.3s duration to investigate filter 

robustness and convergence. The disturbance torque vector is given in Eq. 26. 

 

          mN
T

bd .3,07,07,0, T    (26) 

 

The first scenario used the EKF as the estimator. The results are plotted in Fig. 4. The second scenario used the 

UKF and the results are shown in Fig. 5. The third scenario used the RPF and the results are shown in Fig. 6. The 

mean filter algorithm simulation time in the first approach was 4.8136s with a standard deviation of 1.096s. The 

mean filter algorithm simulation time in the second approach was 9.6889s with a standard deviation of 0.8601s.  

 

The third approach had a mean filter algorithm simulation time of 4105518.3  s with a standard deviation of 

119.8495s. Finally, estimation error means of all scenarios are plotted together in Fig. 7 for comparison. Figure 7 

shows that RPF yielded more accurate estimates after the unexpected disturbance, followed by the UKF and 

EKF. It also presented improved convergence rate with respective to the EKF and UKF approaches. At its peak 

in attitude estimation error, the RPF error was only 17% of the EKF error and 25% of the UKF error. Moreover, 

the RPF converged to steady-state estimation accuracy almost 10s in advance of the other two filters. 

 

 
 

Figure 5. Scenario 02 results – Unscented Kalman Filter 
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Figure 6. Scenario 03 results – Regularized Particle Filter 

 
From Fig. 7, one also concludes that the estimation accuracy in steady-state is quite similar in all three 

approaches. This is a limitation set by measurement noise, model mismatch, and sensors biases. Note that the 

RPF yields the angular rate estimation accuracy slightly degraded relative to the EKF and UKF. It may have 

been caused by insufficient number of particles, or just because the RPF sample time is five times higher than 

EKF and UKF. 

 
4   Conclusions 

 

Three nonlinear estimation techniques have been investigated in a simulated air-suspended table with a 

straightforward, linearized state feedback law for attitude control. The table uses two pneumatic actuators for 

alignment with the local horizontal plane, and one reaction wheel for azimuth alignment. The sensors consist of 

two accelerometers to estimate the local gravity vector direction, and two magnetometers - one on board the 

table, and the other fixed to the reference coordinate frame to provide azimuth alignment about the local vertical. 

 

The nonlinear system dynamics have been linearized about the desired state, thus decoupling horizontal and 

vertical dynamics. The state feedback control has successfully allocated the closed-loop poles in the desired 

locations for each of the decoupled dynamics.  

 

Three scenarios have been simulated with an unexpected deterministic torque disturbance. The first one used an 

extended Kalman Filter (EKF), the second used an unscented Kalman filter (UKF), whereas the third used the 

regularized particle filter (RPF). 

 

When the unexpected disturbance occurred the EKF approach resulted in the fastest algorithm, with the most 

degraded estimation accuracy though. The UKF produced twice the computational burden with respect to the 

EKF, but the attitude estimation error about the residual misalignment Euler vector was significantly lower. The 

RPF presented a superb gain of accuracy relative to the other algorithms, but at the price of a much heavier 

computational load. With respect to angular rate estimation, all three approaches yielded very similar accuracy. 
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Figure 7. Comparison between the three scenarios 

 
 

For a practical implementation on board a satellite, the RPF is not feasible with present microelectronics. Since 

the modeled dynamics has seven state components to be estimated, the resulting computational load is almost 

impractical even in desktop computers. The UKF should be a good compromise for on-board implementation in 

case the attitude estimation and control system design needs an estimator with lower sensitivity to a torque 

disturbance in comparison with the EKF. With the purpose of reducing computational workload, Chagas and 

Waldmann (2010) suggested the use of a hybrid approach, in which resorts some kind of fault detection 

mechanism should indicate the occurrence of a disturbance and thus switch from the EKF in steady-state to the 

UKF in the unexpected situation. Nevertheless, some implementation issues have arisen with the UKF Chagas 

and Waldmann (2010) involving the computation of the square root of the estimation error covariance matrix for 

generating the σ-points. Sometimes the positive-semi-definiteness of this matrix is lost because of numerical 

errors, hence rendering the UKF likely to be unfeasible for such a real-time, critical application.  

 

Finally, investigation of Monte Carlo-based methods for attitude estimation and control are bound to carry on. 

Even if actual implementations appear today to be faraway into the future due to limited computational 

throughput, the multi-core processors technology is advancing at a fast pace. Today, it remains a challenge to 

fulfill the potential of such technology and parallelize the computations involved in particle filtering for use in 

embedded systems with complex, nonlinear high order dynamics. 
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