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Abstract— This paper proposes a novel methodology to fuse
delayed measurements in a distributed sensor network. The
algorithm derives from the linear minimum mean square error
estimator and yields a linear, unbiased estimator that fuses the
delayed measurements. Its performance regarding the estima-
tion accuracy, computational workload and memory storage
needs is compared to the classical Kalman filter reiteration
that achieves the minimum mean square error in linear and
Gaussian systems. The comparison is carried out using a
simulated distributed sensor network that consists of a UAV
fleet in formation flight in which the GPS measurements and
relative positions are exchanged among neighboring network
nodes. The novel technique yields similar performance to
the reiterated Kalman filtering, which is the optimal linear
Gaussian solution, while demanding less storage capacity and
computational throughput in the problems of interest.

I. INTRODUCTION

A network consisting of spatially distributed sensor nodes
with local processing units for acquiring local measurements
and estimating the state vector of a dynamic system can pro-
duce more accurate estimates when information is exchanged
among the nodes. Such distributed estimation approach is
less susceptible to a single point failure that can cripple
centralized estimation schemes [1], [2].

The processing unit at each sensing node iterates a Kalman
filter. Two distinct possibilities were evaluated in literature:
exchanging sensor measurements among nodes [3], [4], [5]
and exchanging state vector estimates produced by the local
Kalman filters [1], [2].

Distributed filtering has been widely investigated when
network nodes share the dynamic model [1], [2], [3], [4].
However, interesting problems call for algorithms that can
perform the distributed estimation when the nodes do not
share the state-model, e.g. an UAV fleet [6], a set of satellites
in orbit [7], [8], and spacecrafts flying into the deep space [9],
[10], [11]. To the best knowledge of the authors, the first
approach to information fusion in such a network was [12].
A very similar algorithm was proposed in [13]. In both
investigations the nodes’ states should be related by a linear
transformation. Here, the subject is probed further to deal
with delayed measurements in a distributed network wherein
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a particular dynamic model is embedded in each node.
It is shown here that in such a scenario the exchanged
measurements can only be fused if additional information
is gathered to relate measurements from neighboring nodes
with a node’s state.

It is expected that the required information will arrive
with delays. The accuracy of the distributed estimation by
the network could be severely degraded had the delayed
measurements been processed without adequate caution.
There are a myriad of techniques in the literature to fuse
delayed measurements in a non-distributed estimation. [14]
compared many methods regarding performance, storage
necessity, and computational workload. Among the tech-
niques discussed, [15], [16], [17] need the knowledge that
a delayed measurement has not been received at a node so
that parallel computations can be started to optimally fuse the
delayed measurement when it arrives. On the other hand, the
algorithms in [18], [19] have not been extended to handle
multiple delays. These inconveniences preclude the use of
such algorithms in distributed estimation problems. [20]
compared algorithms to fuse out-of-sequence measurements
in sensor networks, which can be used in the distributed
filtering problem addressed here. These algorithms were de-
veloped to achieve the minimum mean square error (MMSE)
optimality in linear and Gaussian systems and thus require
recursions that yield a heavy computational burden.

In the problems of interest, it is expected that measure-
ments may be received with a delay on the order of thousands
of the sampling step. Thus, algorithms that call for recursions
will be time consuming. Here, a novel approach, thereafter
called measurement transportation, has been developed based
on the delayed-state Kalman filter [21] and on the suboptimal
technique in [22]. This novel algorithm has been compared
with a classical methodology for delayed measurement fu-
sion: the reiterated Kalman filter [23]. This technique assures
MMSE optimality if the system is linear and Gaussian.

A simulated UAV fleet in formation flight is the sensor
network scenario in which GPS measurements and relative
positions are exchanged among the aircraft. It turns out that
this novel technique needs less storage capacity than any
algorithm in [20], the computational workload is lighter in
comparison with the reiterated Kalman filter, and a good
overall performance is achieved for the problems of interest.

Sections II and III present coordinate frames and a glos-
sary of acronyms, respectively. The distributed estimation
problem when the nodes do not share the same state dynam-
ics model is presented in section IV. The two algorithms to
fuse the delayed measurements are described in section V.



The distributed filtering in a UAV fleet is described in sec-
tion VI. Simulations and results are presented in section VII.
Finally, the conclusions are written in section VIII.

II. COORDINATE FRAMES

The true local horizontal frame is used to represent the
INS errors. In the true vehicle position, its X-axis points
towards north, its Y-axis points towards east, and its Z-axis
points down. This coordinate system is thereafter indicated
with the l subscript.

The computed coordinate frame is defined as the local
horizontal frame at the position computed by the INS.

The platform coordinate frame is defined as the local
horizontal frame computed by the INS.

The body coordinate frame is defined as the inertial
sensors coordinate frame. It is usually assumed to be aligned
with the vehicle coordinate frame in strapdown IMUs or
aligned with the platform coordinate frame in IMUs mounted
on a stabilized platform. This coordinate frame is thereafter
indicated with the b subscript.

The Earth-Centered-Earth-Fixed coordinate frame has
its origin at the center of the Earth, its X axis lies on the
equatorial plane and points to the Greenwich meridian, its Z
axis is aligned with the Earth’s rotation axis, and its Y axis
completes the right-hand coordinate frame. It is thereafter
indicated with the e subscript.

The WGS-84 ellipsoid Earth-fixed coordinate frame is
used to represent the GPS data.

III. NOTATION AND ABBREVIATIONS

DCM Direction Cossine Matrix
MMSE Minimum Mean Square Error
y Scalar
y Vector
A Matrix
In Identity matrix of size n.
[y]×x Matrix representation of the cross product

y × x.
Da

b DCM that rotates from the a coordinate frame
to the b coordinate frame.

ρl Transport rate represented in the local horizon-
tal frame.

Ωe,l Earth’s angular rate represented in the local
horizontal frame.

Aspl Specific force represented in the local horizon-
tal frame.

∆Rl INS position error represented in the local
horizontal frame.

∆Vl INS velocity error represented in the local
horizontal frame.

Ψ Misalignment from the computed coordinate
frame to the platform coordinate frame.

∇ Accelerometer triad bias.
ε Rate-gyro triad drift.
Re Earth radius at the latitude of the vehicle.
ge Gravitation at the latitude of the vehicle.

Ωk−1,i Set of all measurements received by the i-th
node up to instant k − 1.

x̂k|k−1,i Estimate of the vector xk,i using all measure-
ment up to instant k − 1.

Pk|k−1,i Estimation error covariance of the vector xk,i

using all measurement up to instant k − 1.

IV. DISTRIBUTED ESTIMATION

Distributed estimation has been widely studied in the liter-
ature using a set of sensors that measure states components
from a common process dynamics [1], [2], [3], [4]. Many
algorithms have been developed to fuse the network data to
improve the overall estimation accuracy and to provide ro-
bustness. The exchanged information can be the state vector
estimates from the neighboring nodes or the measurements
from the corresponding sensors. However, many interesting
problems call for algorithms that can perform distributed
estimation when each node observes a different process, e.g.
an UAV fleet. This scenario is modeled as follows for the
i-th node:

xk+1,i = Fk,ixk,i + Bk,iuk,i + Gk,iwk,i

yk,i = Hk,ixk,i + vk,i

(1)

where Fk,i is a Mi ×Mi state-transition matrix, Bk,iuk,i

is a deterministic and known control vector, Gk,iwk,i is the
model noise assumed to be a zero-mean, white Gaussian
random vector with Qk,i covariance matrix, Hk,i is a Ni ×
Mi measurement matrix, and vk,i is the measurement noise
modeled as a zero-mean, white Gaussian random vector
with Rk,i covariance matrix. The initial state x0,i is a
Gaussian random vector with mean m0,i and covariance
P0,i. Additionally it is assumed that all measurement and
model noises through the network are independent to each
other and are also independent to the initial state x0,i at every
node.

As mentioned before, the nodes does not share the same
dynamics, thus the j-th node measurement cannot be directly
used by the i-th node. If the latter receives, in the instant k, a
measurement from the former, then the posterior probability
density function is:

p(xk,i|yk,i,yk,j ,Ωk−1,i) (2)

where Ωk−1,i is the set of all fused measurements up to
instant k − 1 at node i. Using Bayes rules, one can verify
that:

p(xk,i|yk,i,yk,j ,Ωk−1,i) =

= Ckp(yk,j |xk,i,yk,i,Ωk−1,i)p(yk,i|xk,i)p(xk,i|Ωk−1,i)
(3)

with Ck being a normalizing constant that yields to∫
RMi

p(xk,i|yk,i,yk,j ,Ωk−1,i)dxk,i = 1.
The computation of the p.d.f. p(yk,j |xk,i,yk,i,Ωk−1,i)

will eventually need some sort of additional information to
relate the j-th neighboring node measurement to the i-th node
states as in the following function:

yk,j = hi,j
k (xk,i) (4)



If such function can be constructed, then the j-th node
measurement can be fused at the i-th node as if it was
actually produced by a sensor that is local to the i-th node.
This methodology was used in [24] in which the exchanging
of position measurements from robots was proposed. The
authors verified that it could only be possible if the relative
position vectors had to be available. Additionally, in case
function hi,j

k (·) is nonlinear, then it should be linearized
about x̂k|k−1,i as in the extended Kalman filter algorithm.

V. DELAYED MEASUREMENTS

In a distributed sensor network, it is expected that the
exchanged measurements will spread across the network and
reach distinct nodes with varying time delays. Here, the
sample step is small enough such that the node dynamics
has been assumed constant between two consecutive sample
steps. Thus a delay smaller than the sampling step is negligi-
ble [25]. Additionally, if a measurement is received at instant
tl in which tk−n ≤ tl ≤ tk−n+1, then it has been considered
as delayed by n sample steps. Under these assumptions, a
measurement with a delay lower than one sample step can
be fused as usual. However if a measurement happens to
reach a node with a delay higher than the sampling interval,
then the local estimate could be severally degraded had the
measurement been naı̈vely fused.

It should be noticed that all previous methodologies need
to store information to accomplish the delayed measurement
fusion [14], [20], [23]. Thus one must define a maximum
allowed delay, thereafter called max. If any measurement
with a delay higher than max is received, then it will be
discarded.

A. Measurement Grouping

Let νi
k be the set of all measurements that the i-th node

received in the instant k. It has been considered that these
measurements from the neighboring nodes as described in
eq. 4 depend on a function hi,j

k (xk,i) that is either linear or
has been linearized about x̂k|k−1,i, thus yk,j = Hi,j

k xk,i +
vk,j . The aforementioned set can be partitioned into subsets
according to the measurement delay, hereafter called νi

k,∆n
.

Thus the subset νi
k,∆n

is composed of all measurements
received by the i-th node in the instant k delayed by ∆n

sample steps, where 0 ≤ ∆0 < ∆1 < · · · < ∆L ≤ max.
The measurements in the same subset νi

k,∆n
can be

additionally fused into one single vector to reduce the
computational burden as in eqs. 5:

yf
k,∆n,i

=
∑

j∈νi
k,∆n

Hi,j,T
k−∆n

R−1
k−∆n,j

yk−∆n,j =

=

 ∑
j∈νi

k,∆n

Hi,j,T
k−∆n

R−1
k−∆n,j

Hi,j
k−∆n

xk−∆n,i+

+
∑

j∈νi
k,∆n

Hi,j,T
k−∆n

R−1
k−∆n,j

vk−∆n,j =

= Hf
k,∆n,i

xk−∆n,i + vf
k,∆n,i

(5a)

Rf
k,∆n,i

= cov{yf
k,∆n,i

yf,T
k,∆n,i

} =

=

 ∑
j∈νi

k,∆n

Hi,j,T
k−∆n

R−1
k−∆n,j

Hi,j
k−∆n

 = Hf
k,∆n,i

(5b)
in which the information form of the Kalman filter should
be used, or as in eq. 6 if all measurements in the set share
the same measurement matrix [26]:

Rf,−1
k,∆n,i

=
∑

j∈νi
k,∆n

R−1
k−∆n,j

yf
k,∆n,i

= Rf
k,∆n,i

 ∑
j∈νi

k,∆n

R−1
k−∆n,j

yk−∆n,j

 (6)

Finally, the problem is reduced to fuse the
measurements yf

k,∆n,i
, n ∈ [0, 1, 2, · · · , L]

and to compute (or to approximate) the p.d.f.
p(xk,i|yf

k,∆0,i
,yf

k,∆1,i
, · · · ,yf

k,∆L,i,Ωk−1,i) =
p(xk,i|Ωk,i).

One should note that a consensus over the network is
not pursued here as in [1] or [2]. The nodes send to the
neighbors the local measurements by the time they are
acquired. Additionally, a node can retransmit the information
received to permit that a measurement reach, even if delayed,
nodes outside its neighborhood. The idea is to fuse all
available information (delayed or not) without waiting for
the communication steps to achieve the network consensus.

B. The Reiterated Kalman Filter

When node of a distributed sensor network receives a de-
layed measurement, then the optimal fusion is accomplished
if the posterior estimate is exactly the same as it would
be if the measurement had been received at the time of
its production, without the delay. The most direct way to
accomplish that is to reiterate the Kalman filter from the
instant when the measurement was produced until the present
time [23]. However, one should notice that the MMSE
optimality is assured only in linear and Gaussian systems.

The aforementioned methodology can be only used if the
updated estimates and covariance matrices together with the
fused measurements and respective statistics are stored from
instant k−max up to instant k−1. Let yu

k−n,i and Ru
k−n,i be,

respectively, the measurement vector and its covariance that
was used in the Kalman filter update step at instant k−n by
the i-th node. Thus the algorithm can be written as follows:
• j = ∆L, n = L
• WHILE j ≥ 0

– IF j = ∆n THEN
∗ n = n− 1
∗ Fuse the measurement vectors yu

k−j,i and yf
k,j,i

into yd
k,j,i.

∗ Fuse the statistics of the measurement vectors
Ru

k−j,i and Rf
k,j,i into Rd

k,j,i.
– ELSE
∗ yd

k,j,i = yu
k−j,i



∗ Rd
k,j,i = Ru

k−j,i
– ENDIF
– Using yd

k,j,i, Rd
k,j,i, x̂k−j|k−j−1,i, and

Pk−j|k−j−1,i apply the update step of the
Kalman filter and overwrite x̂k−j|k−j,i and
Pk−j|k−j,i.

– Apply the propagation step of the Kalman filter and
overwrite x̂k−j+1|k−j,i and Pk−j+1|k−j,i.

– yu
k−j,i = yd

k,j,i

– Ru
k−j,i = Rd

k,j,i

– j = j - 1
• ENDWHILE
If the node does not receive any measurements delayed

more than max sampling steps, then the posterior estimate
will be optimal in the MMSE sense in a linear and Gaussian
system. However the computational workload is huge. If the
most delayed measurement was produced n sampling steps
in the past, then this algorithm will iterate the Kalman filter
n+ 1 times.

C. Measurement Transportation [27]

A novel approach to the fusion of delayed measurements
in the Kalman filter is proposed here: the measurement trans-
portation. The algorithm, though suboptimal in the MMSE
sense, has achieved a good performance in the situations
of interest with lighter computational load and less storage
necessity than the reiterated Kalman filter. The approach
is based on the technique in [22] and on the delayed-
state Kalman filter [21], which was constructed to fuse a
measurement composed of two consecutive states, xk−1 and
xk.

Using the model in eq. 1, the state xk−n,i can be related
to xk,i as in eq. 7:

xk−n,i =

[
n−1∏
l=0

F−1
k−(n−l),i

]
xk,i−

n∑
j=1

([
n−j∏
l=0

F−1
k−(n−l),i

]
Gk−j,iwk−j,i

)
−

n∑
j=1

([
n−j∏
l=0

F−1
k−(n−l),i

]
Bk−j,iuk−j,i

) (7)

Thus the fused delayed measurement in each subset νi
k,∆n

can be transported to the present instant by:

yf
k,∆n,i

= Hp
k,∆n,i

xk + up
k,∆n,i

+ vp
k,∆n,i

= yp
k,∆n,i

(8)

where:

Hp
k,∆n,i

= Hf
k,∆n,i

[
∆n−1∏
l=0

F−1
k−(∆n−l),i

]

up
k,∆n,i

=

−Hf
k,∆n,i

∆n∑
j=1

([
∆n−j∏
l=0

F−1
k−(∆n−l),i

]
Bk−j,iuk−j,i

)

vp
k,∆n,i

= vf
k,∆n,i

−

Hf
k,∆n,i

∆n∑
j=1

([
∆n−j∏
l=0

F−1
k−(∆n−l),i

]
Gk−j,iwk−j,i

)
︸ ︷︷ ︸

?

Notice that the fused delayed measurement noise vp
k,∆n,i

has a covariance ellipsoid larger than that of the original
measurement due to the summation of the model noise
samples from instants k − ∆n up to k − 1 (?). Thus, the
fused delayed measurement signal-to-noise ratio degrades
with respect to the instantaneous measurement.

By stacking the measurements in each subset νi
k,∆n

, n ∈
[0, 1, 2, · · · , L], the measurement vector to be fused at instant
k by the i-th node is:

ye,p
k,i = He,p

k,ixk,i + ve,p
k,i (9)

where:

ye,p
k,i =

[
yp,T
k,∆0,i

yp,T
k,∆1,i

· · · yp,T
k,∆L,i

]T
− ue,p

k,i

ue,p
k,i =

[
up,T
k,∆0,i

up,T
k,∆1,i

· · · up,T
k,∆L,i

]T
He,p

k,i =
[

Hp,T
k,∆0,i

Hp,T
k,∆1,i

· · · Hp,T
k,∆L,i

]T
ve,p
k,i =

[
vp,T
k,∆0,i

vp,T
k,∆1,i

· · · vp,T
k,∆L,i

]T
Under the foregoing assumptions, it is clear that ve,p

k,i has
zero mean. Thus its covariance matrix is:

Re,p
k,i = E{ve,p

k,iv
e,p,T
k,i } =

=

 E{vp
k,∆0,i

vp,T
k,∆0,i

} · · · E{vp
k,∆0,i

vp,T
k,∆L,i}

...
. . .

...
E{vp

k,∆L,iv
p,T
k,∆0,i

} · · · E{vp
k,∆L,iv

p,T
k,∆L,i}


(10)

where the expectations E{vp
k,∆n,i

vp,T
k,∆m,i}, n,m ∈

[0, 1, 2, · · · , L], can be computed as follows:

E{vp
k,n,iv

p,T
k,m,i} =

=



Rf
k,n,i · δ(n−m) + Hf

k,n,i·

·
min(n,m)∑

j=1

([
n−j∏
i=0

F−1
k−(n−i)

]
Qk−j ·

·

[
m−j∏
i=0

F−1
k−(m−i)

]THT,f
k,m,i, n > 0,m > 0

Rf
k,0,i · δ(n) · δ(m), m = 0 or n = 0

(11)
where δ(n) is the Kronecker’s delta.

The usual Kalman filter algorithm cannot be used with the
measurement in eq. 9, because the measurement noise ve,p

k,i

is not uncorrelated with the model noise. Thus, the linear
MMSE estimate produced by the Kalman filter update step,



defined in eq. 12, needs to be rewritten [28].

x̂k|k,i = E{xk,i|ye,p
k,i ,Ωk−1,i} = E{xk,i|Ωk−1,i}+

+ Cxy
k,iC

yy,−1
k,i (ye,p

k,i − E{y
e,p
k,i |Ωk−1,i})

Cxy
k,i = E{(xk,i − E{xk,i|Ωk−1,i})·
· (ye,p

k,i − E{y
e,p
k,i |Ωk−1,i})T |Ωk−1,i}

Cyy
k,i = E{(yu

k,i − E{y
e,p
k,i |Ωk−1,i})·

· (ye,p
k,i − E{y

e,p
k,i |Ωk−1,i})T |Ωk−1,i}

Pk|k,i = Pk|k−1,i −Cxy
k,iC

yy,−1
k,i Cxy,T

k,i
(12)

One can see that [28], [29]:

E{ye,p
k,i |Ωk−1,i} = He,p

k,iE{xk,i|Ωk−1,i} = He,p
k,i x̂k|k−1,i

(13)
Cxy

k,i = Pk|k−1,iH
e,p,T
k,i + Sk,i (14)

Cyy
k,i = He,p

k,iPk|k−1,iH
e,p,T
k,i +Re,p

k,i +He,p
k,iSk,i +ST

k,iH
e,p,T
k,i

(15)
where Sk,i = E{(xk,i−x̂k|k−1,i)v

e,p,T
k,i |Ωi

k−1}. In the usual
Kalman filter algorithm, Sk,i is zero due to the assumption
that the model and measurement noise vectors are uncor-
related. However, the transported measurement, defined in
eq. 9, carries the model noises from the instant it was
produced up to the instant k − 1.

The Sk,i matrix can be rewritten as:

Sk,i = E{(xk,i − E{xk,i})ve,p,T
k,i |Ωk−1,i}−

E{(x̂k|k−1,i − E{xk,i})ve,p,T
k,i |Ωk−1,i}

(16)

It can be verified that x̂k|k−1,i is a random vector that
depends just on all the measurement vectors fused up to
instant k− 1 at the i-th node and on the random vector x0,i.
The latter has been assumed to be independent with respect
to all measurements and model noise sequences through-
out the network. Thus, conditioned on Ωk−1,i, x̂k|k−1,i

and ve,p
k,i are independent, which leads to E{(x̂k|k−1,i −

E{xk})ve,p,T
k,i |Ωk−1,i} = 0Mi×(L+1)Ni

.
Additionally it can be shown by induction that:

xk,i =

[
n∏

t=1

Fk−t,i

]
xk−n,i+

Gk−1,iwk−1,i + Bk−1,iuk−1,i+

n∑
j=2

([
j−1∏
t=1

Fk−t,i

]
Gk−j,iwk−j,i

)
+

n∑
j=2

([
j−1∏
t=1

Fk−t,i

]
Bk−j,iuk−j,i

)
(17)

and setting n = k, one can see that:

xk,i − E{xk,i} =

[
k∏

t=1

Fk−t,i

]
(x0,i −m0,i)+

Gk−1,iwk−1,i +

k∑
j=2

([
j−1∏
t=1

Fk−t,i

]
Gk−j,iwk−j,i

)
(18)

A white sequence has been assumed as the model noise
Gkwk, k ∈ N. Thus E{GnwnwT

mGT
m} = Qn · δ(n −m).

This result together with the assumption that x0 is inde-
pendent with respect to all model and measurement noise
sequences leads to:

E{(xk,i − E{xk,i})vp,T
k,∆n,i

|Ωk−1,i} =−Qk−1

[
∆n−1∏
l=0

F−1
k−(∆n−l),i

]T
−

∆n∑
j=2

([
j−1∏
t=1

Fk−t,i

]
·

·Qk−j

[
∆n−j∏
l=0

F−1
k−(∆n−l),i

]THf,T
k,∆n,i

(19)
for n ∈ [0, 1, 2, · · · , L] and ∆n 6= 0. If ∆0 = 0, then:

E{(xk,i − E{xk,i})vp,T
k,∆0,i

|Ωk−1,i} = 0Mi×Ni
(20)

The results in eqs. 19 and 20 allow the computation of the
matrix Sk,i as in eq. 21:

Sk,i =



(
E{(xk,i − E{xk,i})vp,T

k,∆0,i
|Ωk−1,i}

)T(
E{(xk,i − E{xk,i})vp,T

k,∆1,i
|Ωk−1,i}

)T
...(

E{(xk,i − E{xk,i})vp,T
k,∆L,i|Ωk−1,i}

)T



T

(21)
Finally the Kalman filter update step can be performed

using the linear MMSE estimate in eq. 12, which can be
computed using eqs. 13, 14, and 15.

This method needs the product of the inverse of con-
secutive state-transition matrices, which imposes a heavy
computational load. However, the state-transition matrix in-
verses from instant k − max up to instant k − 1 can be
stored to decrease the computational burden of computing
these products. One should notice that the state-transition
matrix is always invertible for discretized continuous linear
systems [30].

Table II in [20] shows the memory needs for nine algo-
rithms that can fuse delayed measurements in a multisensor
environment. Local node access to the state-transition matrix
and model noise covariance matrices from instant k −max
up to instant k− 1 has been assumed. Thus, if it holds, then
the measurement transportation just need to store max ·Mi

elements regarding the control signals. If the state-transition
matrix inverses are also stored to decrease the computational
burden, then the proposed algorithm must store max · (Mi +
M2

i ) elements. In both cases, the measurement transportation
is the method with the lowest memory needs among the
methods analyzed in [20].

The MMSE estimate could be achieved in a linear and
Gaussian system if all the measurements fused with Kalman
filtering were not delayed, which is not the case of the
investigated scenarios. No claim of optimality is made re-
garding the use of either the reiterated Kalman filtering or the
measurement transportation approach in the investigated sce-
narios where error dynamics are linearized, noise sequences



are non-Gaussian, and delayed measurements transit through-
out the network. However, since the equations have been
derived based on linear MMSE estimation, it can be claimed
that the measurement transportation approach is an unbiased
estimator for the fusion of delayed measurements [28].

VI. UAV FLEET PROBLEM FORMULATION

If a fleet of UAVs is modeled as nodes of a distributed
sensor network with links to exchange information, then it
has been indicated by eq. 4 and its further development that
GPS measurements from one UAV can be used by another
UAV if their relative positions are available measurements as
well. This information sharing can be used to increase the
robustness of the fleet formation flight, e.g. if a UAV loses
GPS signal lock, then INS solution errors can be limited
if the neighboring nodes’ GPS measurements are correctly
fused. However, it is likely that these network data will arrive
with varying, possibly high delays across the network nodes.
Thus, the scenario motivates the use of the algorithms in the
last section to properly fuse the delayed information in transit
throughout the network.

Omitting model noise, the continuous-time INS error
model dynamics for the i-th UAV is described as fol-
lows [31], [32]:

ẋi(t) = Ai(t) · xi(t)

Ai =


[ρl,i]× I3×3 03×3 03×3 03×3

ge,i αi Γi Db
l,i 03×3

03×3 03×3 βi 03×3 −Db
l,i

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3


xi =

[
∆RT

l,i ∆VT
l,i ψT

i ∇T
b,i εTb,i

]T
(22)

where αi = [ρl,i + 2Ωe,l,i]×, βi = [ρl,i + Ωe,l,i]×, σi =
[Aspl,i]×, ge,i = diag(−ge,i/Re,i −ge,i/Re,i 2ge,i/Re,i),
and diag(·) is a diagonal matrix. Thus the discrete form of
this model can be written as:

xk+1,i = Fk,ixk,i + uk,i + Gk,iwk,i (23)

where xk,i = xi(tk), Fk,i = eA(tk−1)·∆, ∆ is the sample
step, Gk,iwk,i is the model noise as described in eq. 1, and
uk,i is a virtual control vector used to remove the mean of
xk,i when the Kalman filter estimates are fed back to correct
the INS.

The GPS measurement is assumed to directly provide
UAV position and velocity in the WGS-84 ellipsoid Earth-
fixed coordinate frame. Thus, these data are compared to
the INS solution to produce a measurement vector of the
state-error. Receiver clock errors have not been involved in
this investigation. Under this considerations, the discrete GPS
measurement equation for the INS error model is:

yGPS
k,i =

[
De

l,i(p
GPS
k,e,i − pINS

k,e,i )

De
l,i(v

GPS
k,e,i − vINS

k,e,i )

]
yGPS
k,i =

[
I3 03 03 03 03

03 I3 03 03 03

]
xk,i+

+

[
De

l,i 03

03 De
l,i

]
vGPS
k,i

(24)

where pGPS
k,e,i and vGPS

k,e,i are, respectively, the position and
velocity of the vehicle given by the GPS receiver on board
and represented in the Earth-Centered-Earth-Fixed coordi-
nate frame; pINS

k,e,i and vINS
k,e,i are, respectively, the position

and velocity of the vehicle given by the INS and represented
in the Earth-Centered-Earth-Fixed coordinate frame; and
vGPS
k,i is assumed to be a white Gaussian noise sequence

with covariance RGPS
k,i . The DCM De

l,i can be computed
using either the GPS data or the INS solution.

If the i-th UAV receives the GPS position from the j-th
UAV (pGPS

k,e,j ), then the former can use this information if the
measurement of the relative position between the two UAVs
(pk,e,j→i) is available as in eq. 25:

pGPS
k,e,j + pk,e,j→i = pGPS,i

k,e,j (25)

where pGPS,i
k,e,j is a position measurement of the i-th UAV

using the GPS measurement data from j-th UAV and the
measurement of the relative position between the UAVs. The
latter cannot be constructed using the GPS information from
both UAVs, since then no additional information would be
available. The relative position can be obtained, for example,
from an imaging pod and proper image processing, or by a
RF range measurement as studied in [33]. Finally, the state-
error measurement using the information from the j-th UAV
can be constructed as follows:

yGPS,i
k,j = De

l,i(p
GPS,i
k,e,j − pINS

k,e,i )

yGPS,i
k,j =

[
I3 03 03 03 03

]
xk,i + De

l,iv
GPS,i
k,j

(26)
where vGPS,i

k,j is assumed to be a white Gaussian noise
sequence with RGPS,i

k,j covariance matrix
If the measurement from the j-th UAV arrives with de-

lay, then the algorithms showed previously can be used
to correctly fuse it into the i-th UAV Kalman filter. One
should notice that the relative positions and the GPS data
does not need to be transmitted at the same time. However,
the UAVs must store the relative positions received from
instant k − max up to instant k to properly convert the
neighboring nodes’ GPS measurements as described in eq. 25
when needed.

VII. SIMULATIONS AND RESULTS

The simulations have been carried out using a swarm of 5
UAVs. The INS solution was given by the algorithm in [34].
Additionally, a magnetometer as described in [35] has been
added to each UAV to limit the misalignment due to the low-
quality inertial sensors. The communication links are shown
in fig. 1, the simulations parameters are presented in Table I,
and the UAVs velocities and angular rates are described in
the Apendix.

The UAVs do not share any information before t = 151 s.
Additionally, all the measurements have been considered to
propagate within the network and reach neighboring nodes
at a fixed 60 s (6,000 sampling steps) after measurement
transmission, which is the maximum allowed delay. This
is assumed to be the worst scenario possible, and provides



TABLE I
SIMULATION PARAMETERS

Sensors

∇
[

3 3 3
]T mg

ε
[

1000 1000 1000
]T ◦ /h

Accelerometers
covariance (R∇)

diag
(

1 1 1
)

(mg)2

Rate-gyros
covariance (Rε)

diag
(

500 500 500
)

(◦/h)2

RGPS diag
(

81 81 81 0.1 0.1 0.1
)

SI units2

Rmagnetometer diag
(

(2 · 10−5)2 (2 · 10−5)2 (2 · 10−5)2
)

Gauss2

Covariance of
relative position
measurement

5 · diag
(

81 81 81
)

m2

GPS and magne-
tometer data fre-
quency

1 Hz

INS
Initial position 23◦12′ S 45◦52′ W + 0.05 · G where G is a zero-mean Gaussian variable with standard deviation of 1”.
Initial altitude 700 m +H where H is a zero-mean Gaussian variable with standard deviation of 1 m.
Initial velocity

[
0 0 0

]T m/s
Initial alignment TRIAD algorithm [36]
INS solution
sampling rate
(tins)

0.01 s

Kalman filter
Feedback start 95 s

Q, t < 95 s 1/50 · tins ·


03 03

Db
l 03

03 −Db
l

06

 · [ R∇ 03

03 Rε

]
·


03 03

Db
l 03

03 −Db
l

06


T

SI Units2

Q, t ≥ 95 s 1/150 · tins ·


03 03

Db
l 03

03 −Db
l

06

 · [ R∇ 03

03 Rε

]
·


03 03

Db
l 03

03 −Db
l

06


T

SI Units2

Initial covariance diag
(

502 502 502 22 22 22 0.05 0.05 0.05 0.09 0.09 0.09 0.015 0.015 0.015
)

SI Units2

Initial estimate 015×1 SI units

Fig. 1. UAV fleet communication links.

a tough test for the algorithms. Furthermore, UAV 5 loses
its GPS lock after t = 190 s, and thus the embarked
magnetometer data and the delayed measurements vectors
from neighboring UAVs 1 and 4 are the only information
available to UAV 5. The RMS error of each component
of UAV 5’s state vector has been used to compare the
performance of both the reiterated Kalman filter and the
measurement transportation approach.

In the first scenario, all the measurements were fused
neglecting the measurement delay. The RMS errors of the
position error components computed via a Monte Carlo
simulation with 100 realizations are presented in fig. 2. The
estimate diverges after the local GPS fault when the delayed

measurements are naı̈vely fused.
In the second scenario, the measurements were fused using

the algorithms presented previously. The RMS errors of
the state vector components computed via a Monte Carlo
simulation with 100 realizations are presented in figs. 3 to 7.
The computational load of the reiterated Kalman filter was
3.42 times that of the measurement transportation approach.

A. Results analysis

Firstly, fig. 2 clearly shows that the fusion of delayed
measurements without adequate processing yields in esti-
mation divergence. On the other hand, the results obtained
with scenario 02 and displayed in figs. 3 to 7 show that
the algorithms described here correctly fuse the delayed
measurements and provide limited navigation errors.

The fusion of neighboring nodes’ measurements received
by UAV 5 when its GPS observables were available did not
provide any noticeable improvement in estimation accuracy
(151s < t < 190s) because the simulated scenario had the
relative position measurement covariance with much larger
eigenvalues than those of the GPS measurement covariance.
On the other hand, adequate processing of delayed network
data from neighboring nodes successfully eliminated estima-



tion divergence when the GPS signal was denied to UAV
5.

Figures 3 to 7 also show that the Kalman filter reiteration,
which is optimal in the linear Gaussian case, most times
achieved better performance than that of the measurement
transportation approach. The cost-benefit ratio of the latter is
far more attractive, however, due to its reduced computational
workload and statistically similar estimation performance.

VIII. CONCLUSIONS

This paper presented a novel suboptimal approach, called
measurement transportation, to fuse delayed measurements
in distributed sensor networks. This new technique has less
memory needs than the usual algorithms investigated in [20]
and a good overall performance is achieved for the problems
of interest.

The novel algorithm was compared with the classical
approach to fuse delayed measurements in distributed sensor
networks: the reiterated Kalman filter. The comparison was
carried out using a simulated distributed sensor network that
consists of a UAV fleet in formation flight in which the GPS
measurements and relative positions are exchanged among
neighboring network nodes.

The results shows that both algorithms could correctly
fuse the delayed measurements in the proposed scenario and
produced similar estimation accuracies. The measurement
transportation approach demands a much lower computa-
tional load and requires less memory.

One must notice that the distributed estimation problem
tackled here is neither Gaussian nor linear. Thus, one should
expect that other estimators may yield improved accuracy
with respect to that of the reiterated Kalman filter in the
scenario simulated here. For example, enhanced accuracy
is expected if the INS algorithm is reiterated together with
the Kalman filter and the linearization of the error dynamics
model about the reiterated INS solution is also carried out
at every step. However, the computational load of such
estimator algorithm has shown to be prohibitive even to
computationally resourceful desktop PCs.

APPENDIX
UAVS TRAJECTORY AND ANGULAR MOVEMENT

The UAV trajectory is composed of several segments with
a distinct, constant specific force during each one. They are
described in Table II in which A1 and A2 are uniformly
distributed random variables on the interval [−3, 3] m/s2 that
have been sampled at the beginning of each realization for
each UAV.

The IMU attitude evolves as described in eqs. 27 in terms
of the Euler angles that rotate the local coordinate frame into
alignment with the body coordinate frame (yaw, pitch, and

TABLE II
UAVS TRAJECTORY

Specific forces
Start (s) End (s) N (m/s2) E (m/s2) D (m/s2)

0 30 0 0 -g
30 70 A1 0 -g
70 110 0 A1 -g

110 150 A1 A1 -g
150 190 0 0 -g-A1

190 240 0 0 -g
240 280 -A1 0 -g
280 320 0 -A1 -g
320 360 0 A2 -g
360 500 0 0 -g+A2

500 520 0 A2 -g
520 540 -A2 0 -g
540 560 -A2 A2 -g
560 600 0 -A2 -g
600 660 0 0 -g-A2

660 720 0 A2 -g
720 800 -A2 0 -g

roll rotation sequence).

ψ = 0.1 sin

(
2π

t

300

)
+ 0.05 sin

(
2π

t

1.7

)
+ 0.2 rad

θ = 0.1 sin

(
2π

t

300

)
+ 0.05 sin

(
2π

t

1.7

)
− 0.4 rad

φ = 0.1 sin

(
2π

t

300

)
+ 0.05 sin

(
2π

t

0.85

)
+ 0.5 rad

(27)
One should notice that this trajectory and angular move-

ment yield in a fully observable system [35], [37], [38].
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fended.

[28] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood
Cliffs, New Jersey, United States of America: Prentice-Hall, Inc., 1979.

[29] R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and
Applied Kalman Filtering. United States of America: John Wiley &
Sons, Inc., 1997.

[30] M. Vanvalkenburg. (2012, Apr) The matrix exponential function.
[Online]. Available: http://math.berkeley.edu/%7Emjv/H54Lec22.pdf

[31] A. Weinred and I. Y. Bar-Itzhack, “The psi-angle error equation
in strapdown inertial navigation systems,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 14, no. 3, pp. 539–542, 1979.

[32] J. Lee, C. G. Park, and H. W. Park, “Multiposition alignment of strap-
down inertial navigation system,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 29, no. 4, pp. 1323–1328, 1993.

[33] J. Lapid-Maoz and I. Y. Bar-Itzhack, “Relative-location determination
of cooperating aircraft,” in AIAA Guidance, Navigation and Control
Conference, 2000, Denver, CO, USA, 2000.

[34] O. Salychev, Applied Inertial Navigation:Problems and Solutions.
Moscow, Russia: BMSTU Press, 2004.

[35] R. A. J. Chagas and J. Waldmann, “Geometric inference-
based observability analysis digest of INS error model with
GPS/magnetometer/camera aiding,” in 19th Saint Petersburg Interna-
tional Conference on Integrated Navigation Systems, Saint Petersburg,
Russia, 2012.

[36] M. Shuster and S. Oh, “Three-axis attitude determination from vector
observations,” Journal of Guidance, Control, and Dynamics, vol. 4,
no. 1, pp. 70–77, 1981.

[37] D. Goshen-Meskin and I. Y. Bar-Itzhack, “Observability analysis
of piece-wise constant systems. ii. application to inertial navigation
in-flight alignment [military applications],” IEEE Transactions on
Aerospace and Electronic Systems, vol. 28, no. 4, pp. 1068–1075,
oct 1992.

[38] D. Chung, C. G. Park, and J. G. Lee, “Observability analysis of
strapdown inertial navigation system using Lyapunov transformation,”
in 35th IEEE Conference on Decision and Control, Kobe, Japan, 1995,
pp. 23–28.


