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A stand-alone inertial navigation system (INS) yields time-diverging solutions due to errors in the inertial sensors,
which can inhibit long term navigation. To circumvent this issue, a set of non-inertial sensors is used to limit these errors.
The fusion between additional data and INS solution is often done by means of an extended Kalman filter using a state-error
model. However, the Kalman filter estimates can only be used if the system is fully observable. This paper has analyzed
conditions to achieve full observability under different scenarios using as non-inertial sensors GPS, magnetometer, and
camera. Some results in the literature have been revisited, and novel results have been achieved regarding the observability
analysis when the INS is aided by a magnetometer. The observability for all scenarios has been verified when the system
dynamics is piece-wise constant, and the analysis has been carried out using concepts of linear algebra to provide results
that are geometrically meaningful. The novel results obtained in the case of magnetometer-aided INS have been verified by
covariance analysis using a simulated INS.

Introduction

A stand-alone inertial navigation system (INS) yields time-diverging solutions due to errors in the inertial
measurement unit (IMU) sensors [1], that is accelerometers and rate-gyros arranged in their respective
orthogonal triads. In myriad applications, such errors can preclude the use of the navigation solution in the long
term. To circumvent this issue, a set of non-inertial sensors often aid the INS by means of a state-error model
embedded in an extended Kalman filter [1]. The state-error model employs a state vector that comprises position
and velocity errors, misalignment angles with respect to the locally horizontal coordinate frame, accelerometer
biases, and rate-gyro drifts [1]. Consequently, observability analysis is called for to ensure that the filter
estimates are accurate. Only with full observability the estimation error covariance can decrease to a minimum in
all state-error space directions, and just then Kalman filter estimates can be used to correct the INS errors and
calibrate the inertial sensors [2].

The state-error model is a time-varying, linear system, and thus observability matrix rank computation is not
straightforward. For a stationary condition relative to the local coordinate frame, the state-error model becomes
time-invariant. It has been known that in such case full observability is not achieved, and the Kalman filter does
not work properly [1]. However, observability analysis of time-varying systems is much simplified under the
assumption of piece-wise constant dynamics, in addition to the null space of the total observability matrix lying
within the null space of the dynamics matrix in every distinct maneuver segment [3]. Then, full observability can
be achieved by using velocity error measurements, and either accelerating the IMU in a specific manner [4], or
by subjecting the IMU to some sort of rotation [5]. Further studies have tried to investigate observability without
assuming piece-wise constant dynamics [6,7,8,9,10]. Since the observability analysis of time-varying systems is
not easily applied under general conditions, several restrictions can be considered, for example, constant specific
forces and angular velocities, or a C-shaped path [6,7,8,9,10].

Here constraints have been removed such as assuming a stationary vehicle, or alignment with the local
horizontal frame. It is then shown that for almost all situations of interest and under the constraint of piece-wise
constant dynamics, the observability analysis provides sufficient conditions for full observability that are
general, and geometrically meaningful by use of concepts from linear algebra. Furthermore, to the best
knowledge of the authors, the INS state-error model observability has not been studied in the case of
magnetometer-aided INS.

Coordinate frames

The true local horizontal frame is used to represent the INS errors. In the true vehicle position, its X-axis
points towards north, its Y-axis points towards east, and its Z-axis points down. This coordinate system is
thereafter indicated with the | subscript.
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The computed coordinate frame is defined as the local horizontal frame at the position computed by the
INS. It is thereafter indicated with the ¢ subscript.

The platform coordinate frame is defined as the local horizontal frame computed by the INS. It is
thereafter indicated with the p subscript.

The body coordinate frame is defined as the sensors coordinate frame. It is usually assumed to be aligned
with the vehicle coordinate frame in strapdown IMUs or aligned with the platform coordinate frame in IMUs
mounted on a stabilized platform. This coordinate frame is thereafter indicated with the b subscript.

Notations and Abbreviations

R The set of real numbers

DCM Direction Cosine Matrix

y Scalar

Yy Vector

A Matrix

diag(4 B O) Block-diagonal matrix constructed by the matrices A, B, and C

I, Identity matrix of size n

[yl x Matrix representation of the cross product y x x

Dt? Direction Cosine Matrix that rotates from the a coordinate frame to the b coordinate frame

O)ab Angular rate of the a coordinate frame with respect to the b coordinate frame represented in the ¢
¢ coordinate frame

Pl Transport rate represented in the local horizontal frame

Qe Earth’s angular rate represented in the local horizontal frame

Asp, Specific force represented in the local horizontal frame

AR, INS position error represented in the local horizontal frame

AV, INS velocity error represented in the local horizontal frame

' Misalignment from the computed coordinate frame to the platform coordinate frame

\v4 Bias of the accelerometers

€ Drift of the rate-gyros

RN North-south radius of curvature of the Earth

Re East-west radius of curvature of the Earth

Re Earth radius at the latitude of the vehicle

e Gravitation at the latitude of the vehicle

A Latitude of the vehicle

h Altitude of the vehicle

Pl +Q0, = (Dli Angular rate of the local horizontal frame with respect to the inertial coordinate frame represented in

el =

the local horizontal frame
INS Error Model

INS errors are increasing and unbounded, thus navigation can be seriously compromised in a long-term
mission even with high-quality inertial sensors [1,11]. To circumvent this problem, a set of non-inertial sensors
provides additional information that can limit such errors. The fusion between the non-inertial sensors and the
INS solution is often accomplished by an extended Kalman filter using a state-error model. Here, the state vector
is composed of position and velocity errors, misalignment from the computed coordinate frame to the platform
coordinate frame, bias of the accelerometers, and drift of the rate-gyros [11].

For the sake of completeness, the state-error model for an IMU mounted on a stabilized platform and a
strapdown IMU are presented in Egs. 1 and 2, respectively.

Pl Iz 03 05 05
8e o r 13 03
x=| 05 03 B 0y —-Ii|x, x=[AR AW T V[ s.T]r; (1)
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x=| 03 05 B 03 -D|x, x=[AR.T A vy sﬂ, @)

03 0; 03 03 05
where g =diag(-ge/Re —0¢/Re 20e/Re), a=[p; +2Q¢ L, B=[pj+Qe, ], and T =[Asp],.

Furthermore, a third model is constructed by applying the Lyapunov transformation [6] in Eq. 3 to model 2. The
result is presented in Eq. 4.

Pt)=|0s 03 Iy 05 05 |; (3)

x=| 05 05 B 03 -I3lx, x=[AR[ AV y' V[ s.TF, )

where o =[(o|b|]x.

If the observables directly measure the position and velocity errors, then, by definition, those state vector
components are observable. The position error is dynamically coupled only with the velocity error, which shows
that the position error dynamics fails to bring any unmeasured component into the observable subspace. Hence,
for the sake of simplicity of the observability analysis, the position error component can be neglected [2]. The
models in Egs. 1, 2, and 4 without the position error are thereafter called models 1, 2, and 3, respectively.

Since model 3 relates to model 2 by a Lyapunov transformation that preserves observability, then it is clear
that model 3 with a set of sensors is fully observable if and only if the same condition holds for model 2 with the
same set of sensors.

Non-inertial sensors measurement model

This investigation concentrates on INS error-state observability analysis when three distinct non-inertial
sensors aid the INS: GPS, magnetometer, and camera. A measurement model for each one is described next.

The GPS observables are assumed to directly provide position and velocity errors. In practice, GPS raw data
can be post-processed to yield vehicle position and velocity in the WGS84 ellipsoid coordinate frame as in a
loosely-coupled implementation. Alternatively, the raw data composed of, for example, pseudo-ranges and
Doppler shift between the receiver and the satellites are employed in a tightly-coupled implementation [11]. The
GPS observables are then compared to the INS solution to produce a measurement vector of the state-error.
Receiver clock errors have not been involved in this investigation.

The GPS measurement equation under the aforementioned assumption and neglecting measurement noise is
presented in Eq. 5.

Vaps = I 0; 05 05 03x )
S Tloy 15 05 05 05

The magnetometer observables are composed of the difference between the magnetometer raw data and the
INS-based local geomagnetic field vector. Considering Pinson’s model [12], the DCM from the body coordinate
frame to the true local horizontal frame can be approximated by neglecting second order terms as in Eq. 6.

Dy =D D% -DL =D -(I; ~[y],)-(I; ~[A8]) ~ DP - (I3 ], ~[A6],) , (6)
where A@ is the misalignment from the true coordinate frame to the computed coordinate frame and y is

misalignment from the computed coordinate frame to the platform coordinate frame. Thus, the magnetometer
measurement neglecting noise can be approximated by:
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Brag = Dy - (1, —[w], —[A6],)B, = B,,, —DyB, ~ -D{[y].B, — D;[A6], B,

mag

Dt:)Bmag _BI z_[\Il:lel _[AG]XBI (7)
ymag = [BI ]X\V + [BI ]er

where Bpag is the raw magnetometer measurement and By is the local geomagnetic field vector represented in

the true local horizontal frame, which is not accessible. The latter is usually obtained from a geomagnetic field
model using the position solution either computed by the GPS or by the INS. It is straightforward to check that

DbIO =I5 if the IMU and the magnetometer are mounted on a stabilized platform. Moreover, vector A@ can be

related to the position error represented in the local horizontal frame as in Eq. 8.

0 ! 0
RE+h
Ao =|-—1 0  O|AR =C-AR,. ®)
RN +h
0 tan A 0
L RE+h i

Finally, the magnetometer measurement can be approximated by:
Ymag =[C [Bil. 03 [Bil. 03 03]x. o)

The camera observables are assumed to directly measure the position error and misalignment from the
computed coordinate frame to the platform coordinate frame [14]. According to the approach described in [14],
this assumption is true if the camera can track a minimum number (> 3 ) of landmarks at the same time. Thus the
camera measurement equation is presented in Eq. 10:

Ly 03 05 05 05
.Vcam_|: X, (10)

105 05 T3 05 05
where L3 and J3 are full rank matrices [14].

Observability analysis of piece-wise constant systems

From the INS error dynamics in Egs. 1, 2, and, 4, one concludes that it is a time-varying, linear system. The
most general way to check observability is to compute the observability Grammian [13]. However, it leads to
such complicated mathematical treatment that it is unfeasible for the addressed problem.

In the literature, observability has been verified by three main methods. The first is to analyze conditions
that turn the model into a time-invariant system, e. g. the vehicle is stationary on the Earth’s surface, or to find an
adequate Lyapunov transformation that also leads to a time-invariant system. Thus the observability can be
checked by means of rank computation of the observability matrix [13]. This approach was used in [1,6].

The second method is applicable to piece-wise constant (PWC) systems. The observability analysis is still
done by rank computation, but it turns out that it can be greatly simplified when a certain condition holds as is
presented in Theorem 1[3]. For the INS error model 1, the system can be considered PWC if the specific force is
piece-wise constant [4]. For the INS error model 2, the system can be approximated by a PWC system if the
specific force and attitude with respect to the local horizontal frame are piece-wise constant [5]. Finally, for the
INS error model 3, the PWC system assumption holds if the specific force and IMU angular rate with respect to
the local horizontal frame and represented in this frame are piece-wise constant.

The third method has tried to investigate observability without assuming piece-wise constant dynamics
[6,7,8,9,10]. Since the observability analysis of time-varying systems is not easily applied under general
conditions, several restrictions can be considered, for example, constant specific forces and angular velocities, or
a C-shaped path.

For the sake of simplicity, the second method based on assuming piece-wise constant dynamics has been
preferred here. It can be shown that under this constraint, an observability analysis with linear algebra concepts
provides sufficient conditions for full observability that hold for practically all situations of interest.
Additionally, the approach yields a geometrical insight of the kinematics involved in the observability analysis.
Let a vehicle move at constant altitude according to three consecutive trajectory segments: 1) towards North; 2)
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in a C-shaped trajectory; and 3) towards East. The composed movement leads to a time-varying INS error model.
However, if segment 2 is neglected, then the above INS error models turn into PWC systems. Thus, if full
observability by the end of segment 3 can be proved, then, by definition, the time-varying system composed of
the three segments is also fully observable. However, if full observability cannot be claimed from the analysis of
the first and the third PWC segments, then further analysis including the second segment is needed. For
practically all the situations of interest, the vehicle can move in such a manner that the INS error model will
remain constant during certain time intervals. Thus the analysis of just these segments using the aforementioned
method can provide sufficient conditions for full observability.
A PWC system is defined as in Eq. 11:

X = AJx + Bju
(11)
y=Cjx
where je[0,1,2,3,...] and matrices A i- Bj, and C j are constant for all j. Observability can be checked by rank

analysis of the total observability matrix (TOM), defined as in Eq. 12 for the first r segments [3]:

0 T 0 i
Q(r): [Q()]T [Ql .erAo]T [Q HeAkAk:I [Qr HeAkAk:l (12)

k=i-1 k=r-1

Matrix Q; is defined as in Eq. 13:

QZ[[CJ[ [cial [CiAiZ]r [CiAin_l]T} (13)

where n is the state vector dimension. The computation of the exponential matrices leads to tedious and
complicated algebraic calculations, but it can be avoided if the following theorem holds [3].

Theorem 1 [3]: If:
NULL(Q;) = NULL(4;), Vje[0123,---,r]
then the following holds:
NULL(Q(r)) = NULL(Q, (1))
RANK(Q(r)) = RANK (0 (1))
where és(r) is the stripped observability matrix (SOM) defined as in Eq. 14:

o.n-[] I - ] - I (14

Thus the computation of the exponential matrices can be avoided. The proof can be found in [3].

The validity of Theorem 1 for model 1 with GPS measurements was shown in [4]. However, further analysis
brings out a novel condition that should be satisfied. The observability matrix for the j-th segment can be written,
after elementary row operations, as in Eq. 15:

13 03 03 03 LlnElT
0, T; I 0; Line 2
— |0 r; 0 -T; Line 3

R {ﬁ A B (15)

0; T;p"* 0y T;p"° | Linen

|

where the _subscript j indicates the specific force at j-th segment and Line n are properly sized blocks. Notice

that matrix B, which is the cross product matrix of the angular rate vector (oIi , 18 time-varying. However, B can
be approximated as a constant for a short term analysis if the terrestrial speed is small enough.

A vector x € NULL(Q}) must satisfy the following conditions:
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(D) x; =03 (@) Tjxy +x3 =035 (TR B X2 —x4) = 03,4, n=[0,1,2,-] (16)

A priori, one cannot claim whether x lies or not in NULL(Aj) . However, if Asp| j is not aligned with

O)Ii , then the third condition and Theorem A.4 leads to B jx; — x4 =03, . Thus, it can be verified that x also
lies in NULL(Aj) using the same procedure as in [4].

For model 2 using GPS measurements, [5] verified that Theorem 1 remains valid. However the authors
omitted the same restriction as above: that Theorem 1 is only valid if Asp j is not aligned with (DIi . The

verification is straightforward and will be omitted here for the sake of space.
In case an additional sensor is added to GPS measurements, then it is trivial to check the validity of
Theorem 1 for models 1 and 2. However, recent results have shown that the use of an additional sensor allows

for the relaxation of the aforementioned restriction about the required misalignment of Asp, j and O)Ii [15].
As a result, the observability analysis of models 1 and 2 with GPS measurements can be performed by
means of SOM rank computation if the specific force Asp; j at any segment is not aligned with the angular rate

of the local horizontal frame with respect to the inertial coordinate frame ooIi .

Observability Analysis: IMU mounted on a locally horizontal-stabilized platform in a GPS-aided INS

This scenario was already analyzed in [4]. It was proved that full observability is achieved if the movement
is composed of, at least, three distinct specific force segments selected from table I in [4]. However, it has not
been shown how these segments can be constructed. This extension is developed next.

The SOM for the first three segments can be assembled after elementary row and column operations as in

Eq. 17a. Additionally, a vector x € NULL(Q; (2)) must satisfy the conditions in Eq. 17b.

0,(2)=|0; 0; 03 -T, (17a)

D) x; =034

2) x3=034

3) @ -Tyxy =039

4) [Ty -To)xy =034 (17b)

5) ToB"xy4 =03, nel0]]
6) TiB"x4 =05, nel0]]
7) ToB"xy =05y, nel0]]

The remaining lines do not convey relevant information for the analysis. Since Theorem 1 must hold for this
analysis, then the specific force Asp| j cannot be aligned with the angular rate of the local horizontal frame with

respect to the inertial coordinate frame wli . Thus, conditions 5, 6, and 7 in Eq. 17b together with Theorem A.4
yield x4 =03, . Moreover, condition 3 and Theorem A.l claim that x, must lie in the one-dimensional

subspace defined by the vector difference Asp); —Aspo. Likewise, condition 4 also restricts x; and
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Asp » — Asp) o to be linearly dependent vectors. Thus, if Asp); — Asp; o is not aligned with Asp , —Asp| ¢,

then full observability is achieved. One can note that the three different segments in table I in [4] satisfy the
conditions in Eq. 17b.

Observability Analysis: IMU mounted on a locally horizontal-stabilized platform in a
GPS/Magnetometer-aided INS

It is shown in what follows that by using a calibrated magnetometer the number of segments needed to
achieve full observability is reduced by one. In this scenario, the segments differ from each other only in the
specific force vector because the local geomagnetic field vector represented in the local horizontal frame is
assumed to remain constant for a short term analysis. Thus, the SOM for the first two segments can be written

after elementary row and column operations as in Eq. 18a. Additionally, a vector x e NULL(QS' (2)) must
satisfy the conditions in Eq. 18Db.

0,2)=|0; 0 0 -T, (18a)

D) x =034

2) x3=034

3) (In-To)xy =034

4) [B1luxy =03 (18b)

5) roﬁnX4 =03><17 nE[O,l]
6) T\B"xy =05, nel0]]
7) [B11B"x4 =034, nel0]]

Conditions 5, 6, and 7 in Eq. 18b together with Theorem A.4 yield x4 =0s,; as in the previous analysis.
Furthermore, conditions 3 and 4 restrict x, to be simultaneously aligned to the local geomagnetic field vector
B, and the vector difference Aspy | — Asp) (. Thus, if these two vectors are not aligned, then the only possible
solution for x; is 03, . Therefore, the SOM null space has dimension zero and the system is fully observable. In
other words, if the IMU is mounted on a locally horizontal-stabilized platform in a GPS/Magnetometer-aided
INS, then full observability is achieved if there are at least two segments in which the corresponding specific
force difference Asp|; — Asp; o is not aligned with the local geomagnetic field vector B .

If the magnetometer is not calibrated, e.g. if the observables have an unknown bias, then the above result
does not hold and further investigation is necessary.

Observability Analysis: IMU mounted on a locally horizontal-stabilized platform in a GPS/Camera-aided
INS

The observability matrix for the first segment can be written after elementary row and column operations as
in Eq. 19:
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0)=0; 0; I; 0 (19)
0; 0; 03 -J;

where J3 is a full rank matrix as referred to in Eq. 10. Hence E(; is a full rank matrix, and thus the INS error
model is fully observable from the onset of the first segment when GPS and camera measurements are available.

Observability Analysis: Strapdown IMU in a GPS-aided INS

By analyzing model 3, one can note that the INS error model dynamics of a strapdown IMU is equal to the
model of an IMU mounted on a stabilized platform if the IMU angular rate with respect to the local horizontal

frame O)FI is zero. In such case, the previous results of the observability analysis regarding an IMU mounted on

a stabilized platform remain valid. Moreover, the INS error model of a strapdown IMU can be also stimulated by
rotational motion. Thus additional excitation signals are available to increase the dimension of the observable
subspace. The analysis of the scenario in which the IMU undergoes PWC attitude is presented next.

The observable subspace dimension was first investigated in [5] considering that the IMU position was
stationary on Earth’s surface though subjected to consecutive rotations. [6] proposed to rotate a stationary IMU
with a constant angular rate with respect to the local frame and verified that if the angular rate vector satisfies a
set of conditions, then full observability is achieved. Moreover, [7] analyzed a more general situation that
circumvents the need for the IMU to remain stationary, although the conditions for full observability are not
easily grasped geometrically and it is not straightforward to claim whether a specific trajectory segment leads to
full observability.

From Eq. 2, the observability matrix of the model 2 for the first two segments can be written after

elementary row and column operations as in Eq. 20a. Additionally, a vector x € NULL(Q; (1)) must satisfy the
conditions in Eq. 20b.

1, 0 0, 0,
0, T, Dp° 05
03 ToP 0s ~T, D
= 0; Ty’ 05 ~T,pD"
1= 20a
0 0, 0y D-D° 03 (200
0; 05 05 oD - D)
0; 05 05 TP - Df?)
) x; =034
2) roxz +D|bOX3 = 03><1
3) IoB"(Bx; - D|b°x4) = 03,4, N €[0,1] (20b)

1
4 (D' - DP)x3 =05
n bl b0 _
5) ToB (D" =D 7 )xy =03,,n€[0,1]
where superscripts b0 and bl indicate, respectively, the body coordinate frames at an instant in segment 0 and at
another instant in segment 1. Additionally, it is assumed that the terrestrial speed is such that the local horizontal

frame remains almost constant between segments 0 and 1.
If the specific force Asp; and the angular rate of the local horizontal frame with respect to the inertial

coordinate frame ooIi are not aligned, which must be true for the validity of Theorem 1, then Theorem A.4
together with conditions 3 and 5 in Eq. 20b lead to (a) Bxy — D x4 =03, and (b) (D' =D )x, = 03,.
Condition (b) together with Theorem A.6 claim that x, must lie in the Euler axis in which a single rotation

aligns the b0 coordinate frame with the b1 coordinate frame. This axis is thereafter called ey, . Likewise, x3

must also lie in the same axis due to condition 4. Then condition 2 leads to T'yx, = —D|b 0x3 , which constrains
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x, and the specific force Asp o to lie in a plane perpendicular to the Euler axis epo,p; if x3 is not 0z, . In

the same way, if x4 is not 0s,;, then condition (a) above constrains x, and the angular rate of the local

horizontal frame with respect to the inertial coordinate frame ooIi to also lie in a plane perpendicular to the same

Euler axis epo,p; - Hence, if either the specific force Asp; o or the angular rate of the local horizontal frame

with respect to the inertial coordinate frame Q)Ii is not perpendicular to the Euler axis eyy,p;, then the only

possible solution for x in the null space is that the components x,, x3, and x4 are all 0s,;. In such case,

Q; (1) yields a null space whose dimension is zero. In other words, if either Asp; o or ooli is not perpendicular

to the Euler axis ey, , Which otherwise would be a rather particular coincidence that would not likely endure

during an usual trajectory, then the INS error model is fully observable.

The foregoing conclusion is in agreement with the results in [5], but provides much more general conditions
to verify observability. The investigation in [5] focused on INS error model observability of a stationary vehicle
when the IMU was initially pointing towards North and then subjected to PWC attitude changes. It was
concluded that IMU rotation about either the North or the local vertical axis yields full observability. However, a
rotation about the East axis was not enough to achieve full observability. Indeed, from the above analysis, one

notes that for a stationary vehicle (no matter where it points to), 4sp; o and (DIi lie in the plane spanned by the

local North and vertical directions, and a single rotation about the East axis gives the Euler axis ey ,p; aligned

with the East. Thus ey, is simultaneously perpendicular to Asp o and O)Ii , and hence the INS error model

is not fully observable.
Observability Analysis: Strapdown IMU in a GPS/Magnetometer-aided INS

The observability of a strapdown IMU in a GPS/Magnetometer-aided INS has been investigated here when
the IMU is rotated such that its angular rate with respect to the local horizontal frame O)FI is PWC. If the IMU

does not rotate with respect to this frame, then, according to model 3 the INS error model is equal to that when
the IMU is mounted on a stabilized platform. In such case, the same conditions previously obtained for full
observability hold.

Assuming that the specific force Asp) o remains constant during the analysis interval, then the Lyapunov-
transformed model 3 provides a PWC system if the IMU angular rate with respect to the local horizontal frame
ooFI is PWC. However, it could not be shown whether the conditions of Theorem 1 hold, thus the simplified

analysis based on the stripped observability matrix cannot be used a priori. On the other hand, it turns out that
full observability is achieved in the first segment if some non-restrictive conditions are satisfied. Thus the
analysis hereafter has verified the null space of the total observability matrix in Eq. 12.

The observability matrix for the first segment after elementary row and column operations is written in Eq.

21a. Additionally, a vector x NULL(Q(;) must satisfy the conditions in Eq. 21b.

I; 05 05 05
0; [Bilx 05 03
Q= (21a)
0; 0; 05 —[B]

03 oy 0; -T

D x =03
2) x3=034
3) [Bilixy =03 (21b)

4) [Bilxxq =039
5) wlyxy —Loxy =03
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Conditions 3 and 4 claim that if x, and x4 are non-null, then they must be simultaneously aligned with

B, . This condition can be mathematically represented as in Eqs. 22.

X :k0B|, k() eR

(22)
X4 = le| 5 kl S %
Substituting Egs. 22 in condition 5 leads to:
ooTy(koBi) =Ty (ki By) (23)

Assuming that the specific force Asp) ( is not aligned with the IMU angular rate with respect to the local

horizontal frame O)FI , then the local geomagnetic field B; must be aligned with the specific force Asp,  for
Eq. 23 to hold, thus yielding the trivial solution to the equality. If the local geomagnetic field vector B; is not
aligned with the specific force Asp)(, and since neither B nor Asp;o is 0, then the only solution to

conditions 3, 4, and 5 in Eq. 21b is x, =03, and x4 = 05, , which claims that the system is fully observable

because the null space of Q; has dimension 0. This result can also be checked using Theorem A.5.

The foregoing discussion proved that the INS error model of a strapdown IMU aided by GPS and
magnetometer is fully observable at the first segment if the following conditions hold:

e The specific force ( Asp; ( ) remains constant during the analysis interval;

e The IMU is rotated in such a manner that its angular rate with respect to the local horizontal frame

represented in the local horizontal frame (DFI is PWC;

e Neither the IMU angular rate with respect to the local horizontal frame (DFI nor the local geomagnetic
field By is aligned with the specific force Asp g .

One should note that these are sufficient conditions for full observability because only 15 lines of the
observability matrix in Eq. 2la have been analyzed. The restriction regarding the alignment of the
aforementioned vectors might be relaxed if more lines were added to the analysis. However, the condition should
be general enough for every practical scenario. Thus, the analysis of additional lines will not be further pursued
here.

Observability Analysis: Strapdown IMU in a GPS/Camera-aided INS

This scenario analysis is very similar to the one in which the IMU is mounted on a stabilized platform and
thus has been omitted here. Indeed, the conclusion is the same: full observability is achieved in the first segment.

Simulations

The covariance analysis has been used to verify the observability of the INS error model. A simulated INS
has been coded in Matlab. Hereafter only the scenarios regarding the novel observability analyses involving use
of a calibrated magnetometer is presented due to the lack of space. The results of the observability analysis for
other scenarios can be compared with previous results in the literature.

All simulations have considered ideal accelerometers and rate-gyros and thus the model noise covariance
has been set to zero. The initial Kalman filter covariance and GPS and magnetometer measurement noise
covariance matrices are presented, respectively, in Egs. 24, 25, and 26 with SI units.

PO:diag(lo—6 10 10% 10 10* 10 10 10 10 1071° 10710 10‘10) (24)
RGpszdiag(lO_lo 10710 10‘10) (25)
RMAG:diag(10‘2° 10720 10‘20) (26)

where diag(.) denotes a diagonal matrix.

For the sake of simplicity, the local geomagnetic field vector has been assumed to point towards north with
230.60 mGauss of intensity, which is the geomagnetic field intensity at the city of Sdo José dos Campos, Brazil.
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The first and second scenarios simulate an IMU mounted on a locally horizontal-stabilized platform in a
GPS/Magnetometer-aided INS when the vehicle is subjected, respectively, to trajectories 1 and 2 in Table in
which each segment lasts for 20 s. The standard deviations of the state estimation error are presented component-
wise in fig. 1 for the first scenario and in fig. 2 for the second scenario. One can note that the theoretical results
have been confirmed by the covariance analysis. In the first trajectory, figure 1 shows the effect of the specific
force difference from segment 1 to segment 2 not in alignment with the local geomagnetic field vector. The
foregoing analysis has shown that the system is then fully observable at the onset of the second segment and fig.
1 can confirm it, because the standard deviations are invariant to the specific force changes at the onset of
segments 3 and 4. On the other hand, in the second trajectory seen in fig. 2, the specific force difference from
segment 1 to segment 2 is aligned with the local geomagnetic field vector. Thus the system becomes fully
observable only at the onset of segment 3, which is confirmed in fig. 2 since a set of standard deviations decays
only after the beginning of segment 3.

The third scenario simulates a position-stationary strapdown IMU aided by GPS and a magnetometer. The
IMU has been subjected to a constant angular rate with respect to the local horizontal frame about the east axis.
The standard deviations of the state estimation error are presented component-wise in fig. 3. The results of the
observability analysis have been verified again, since all standard deviations decay due to the IMU rotation.

Table 1. Trajectories for the first and second scenarios

Specific Force Trajectory 1 (m/s?) Trajectory 2 (m/s?)
Segments 1 2 3 4 1 2 3 4
Aspy 0 0 0.5 0 0 0.5 0.5 0
Aspg 0 0.5 0 0.5 0 0 0 0.5
Aspp -g -g 0.5-g 0.5-g -g -g 0.5-g 0.5-g
Std. Dev. psi, Stel. Dev. psig Std. Dev. psi,
10* 10’ - . 100
g §10% fo I S g
e i : : F A0 b ]
=] =] B [m]
= = 10" : : 4 = Krfi
10° ‘ : : 10" ‘ ; 1% ‘ : :
0 20 40 60 a0 0 20 40 60 a0 0 20 40 60 a0
Time (s} Time (51 Time (s)
Std. Dev EHaSN Std. Dev BiaSE Std. Dewv B\aSD
1’ 10° 10°
7 10’ Z I
Q =] =]
& & &
10" L i i 10% i i H i i H
o 20 40 60 ao o 20 a0 60 a0 o 20 4an 60 aa
Time () Time: (5) Time (5)
Std. Dev, DrlftN Std. Dev. Dr\ftE Std. Dev, DrlftD
10° 10° 10°
T T = "
8 8 &
# # a
10 15 i i i 10"5 i i i 10"5 i i i
o 20 40 a0 a0 o 20 40 a0 a0 o 20 4an a0 a0
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Fig. 1. Simulation results for the first scenario
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Fig. 3. Simulation results for the third scenario
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Conclusions

The observability of a linear INS error model has been analyzed with distinct aiding sensors that involve both
the use of GPS observables only, and usage of GPS combined with either a calibrated magnetometer or a camera
when the vehicle trajectory yields piece-wise constant error dynamics. The analysis dealt with both a gyro-
stabilized platform undergoing piece-wise constant specific force segments and a strapdown IMU that is also
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subjected to piece-wise rotation segments. Original geometric insights related to specific forces, angular rates,
the geomagnetic field, and image measurements have been derived by extending previous observability results
and considering fusion with a calibrated magnetometer or a camera for INS aiding. Novel observability results
were obtained in the case of aiding the INS with magnetometer and GPS. These results have been verified via
simulation of the covariance of the estimation error.

Appendices

Theorem A.1: Let x e R> = 05, and y e R = 05, . If [x], y =03,;, then x and y must be aligned.
Proof: The proof is trivial considering that [x],y =xx y .

Theorem A2: Let xe®R>=0;, and ye®R>=0;,. Thus NULL([y], [x]")=NULL([x].),
ne [1,2,3,4,-~-], iff x and y are not orthogonal.
Proof: Left to the reader due to lack of space.
Theorem A3: Let xe®R> # 03, and ye R = 05, be two orthogonal vectors, then the set of vectors
[x, yxx] spans NULL([y], -[x]c) .
Proof: Left to the reader due to lack of space.
Theorem A.4: Let xeR> # 05, and ye R = 0, be two non-collinear vectors. If [y], -[X]} - = O3
holds for all n€[0,1,2,---,L], L>1, then v =05, is the only possible solution.
Proof: The proofis trivial considering Theorems A.1, A.2, and A.3.
Theorem A5: Let x e R 03,4 and ye R - 05,q be two non-collinear vectors. If v e R and we R’
satisfy:
1Ly =[x ow,
then the following must hold:
v=Kkox+Ky, Ko.k; e R
w=kyx+k3(xxy), Ky,kyeR’
Proof: Left to the reader due to lack of space.
Theorem A.6: Let x e R> and Dg and DS be the DCMs from the a coordinate frame to, respectively, the

b and ¢ coordinate frames. If (Dg — D5)x =05, holds, then x lies in the Euler axis in which a single rotation
aligns the b coordinate frame to the ¢ coordinate frame.
Proof: The condition can be rewritten as x = DgD5x=DSx. Thus x is a vector that has the same

representation in the b and ¢ coordinate frames, then x must lie in the Euler axis in which a single rotation
rotates the b coordinate frame into alignment with the ¢ coordinate frame.
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