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A stand-alone inertial navigation system (INS) yields time-diverging solutions due to errors in the inertial sensors, 

which can inhibit long term navigation. To circumvent this issue, a set of non-inertial sensors is used to limit these errors. 
The fusion between additional data and INS solution is often done by means of an extended Kalman filter using a state-error 
model. However, the Kalman filter estimates can only be used if the system is fully observable. This paper has analyzed 
conditions to achieve full observability under different scenarios using as non-inertial sensors GPS, magnetometer, and 
camera. Some results in the literature have been revisited, and novel results have been achieved regarding the observability 
analysis when the INS is aided by a magnetometer. The observability for all scenarios has been verified when the system 
dynamics is piece-wise constant, and the analysis has been carried out using concepts of linear algebra to provide results 
that are geometrically meaningful. The novel results obtained in the case of magnetometer-aided INS have been verified by 
covariance analysis using a simulated INS. 

 
Introduction 

 
A stand-alone inertial navigation system (INS) yields time-diverging solutions due to errors in the inertial 

measurement unit (IMU) sensors [1], that is accelerometers and rate-gyros arranged in their respective 
orthogonal triads. In myriad applications, such errors can preclude the use of the navigation solution in the long 
term. To circumvent this issue, a set of non-inertial sensors often aid the INS by means of a state-error model 
embedded in an extended Kalman filter [1]. The state-error model employs a state vector that comprises position 
and velocity errors, misalignment angles with respect to the locally horizontal coordinate frame, accelerometer 
biases, and rate-gyro drifts [1]. Consequently, observability analysis is called for to ensure that the filter 
estimates are accurate. Only with full observability the estimation error covariance can decrease to a minimum in 
all state-error space directions, and just then Kalman filter estimates can be used to correct the INS errors and 
calibrate the inertial sensors [2]. 

The state-error model is a time-varying, linear system, and thus observability matrix rank computation is not 
straightforward. For a stationary condition relative to the local coordinate frame, the state-error model becomes 
time-invariant. It has been known that in such case full observability is not achieved, and the Kalman filter does 
not work properly [1]. However, observability analysis of time-varying systems is much simplified under the 
assumption of piece-wise constant dynamics, in addition to the null space of the total observability matrix lying 
within the null space of the dynamics matrix in every distinct maneuver segment [3]. Then, full observability can 
be achieved by using velocity error measurements, and either accelerating the IMU in a specific manner [4], or 
by subjecting the IMU to some sort of rotation [5]. Further studies have tried to investigate observability without 
assuming piece-wise constant dynamics [6,7,8,9,10]. Since the observability analysis of time-varying systems is 
not easily applied under general conditions, several restrictions can be considered, for example, constant specific 
forces and angular velocities, or a C-shaped path [6,7,8,9,10].  

Here constraints have been removed such as assuming a stationary vehicle, or alignment with the local 
horizontal frame. It is then shown that for almost all situations of interest and under the constraint of piece-wise 
constant dynamics, the observability analysis provides sufficient conditions for full observability that are 
general, and geometrically meaningful by use of concepts from linear algebra. Furthermore, to the best 
knowledge of the authors, the INS state-error model observability has not been studied in the case of 
magnetometer-aided INS. 

 
Coordinate frames 

 

The true local horizontal frame is used to represent the INS errors. In the true vehicle position, its X-axis 
points towards north, its Y-axis points towards east, and its Z-axis points down. This coordinate system is 
thereafter indicated with the l subscript. 
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The computed coordinate frame is defined as the local horizontal frame at the position computed by the 
INS. It is thereafter indicated with the c subscript. 

The platform coordinate frame is defined as the local horizontal frame computed by the INS. It is 
thereafter indicated with the p subscript. 

The body coordinate frame is defined as the sensors coordinate frame. It is usually assumed to be aligned 
with the vehicle coordinate frame in strapdown IMUs or aligned with the platform coordinate frame in IMUs 
mounted on a stabilized platform. This coordinate frame is thereafter indicated with the b subscript. 

 
Notations and Abbreviations 

 
  The set of real numbers 
DCM Direction Cosine Matrix 
y  Scalar 
y  Vector 

A  Matrix 

)( CBAdiag  Block-diagonal matrix constructed by the matrices A , , and C  B

nI  Identity matrix of size n 

xy ][  Matrix representation of the cross product xy  

a
bD  Direction Cosine Matrix that rotates from the a coordinate frame to the b coordinate frame 

 
ab
c  Angular rate of the a coordinate frame with respect to the b coordinate frame represented in the c 

coordinate frame 

l  Transport rate represented in the local horizontal frame 

le,  Earth’s angular rate represented in the local horizontal frame 

lAsp  Specific force represented in the local horizontal frame 

lR  INS position error represented in the local horizontal frame 

lV


 INS velocity error represented in the local horizontal frame 

 Misalignment from the computed coordinate frame to the platform coordinate frame 
  Bias of the accelerometers 
  Drift of the rate-gyros 

NR  North-south radius of curvature of the Earth 

ER  East-west radius of curvature of the Earth 

eR  Earth radius at the latitude of the vehicle 

eg


 Gravitation at the latitude of the vehicle 

 Latitude of the vehicle 

h  Altitude of the vehicle 

li
llel   ,  Angular rate of the local horizontal frame with respect to the inertial coordinate frame represented in 

the local horizontal frame 
 

INS Error Model 
 
INS errors are increasing and unbounded, thus navigation can be seriously compromised in a long-term 

mission even with high-quality inertial sensors [1,11]. To circumvent this problem, a set of non-inertial sensors 
provides additional information that can limit such errors. The fusion between the non-inertial sensors and the 
INS solution is often accomplished by an extended Kalman filter using a state-error model. Here, the state vector 
is composed of position and velocity errors, misalignment from the computed coordinate frame to the platform 
coordinate frame, bias of the accelerometers, and drift of the rate-gyros [11]. 

For the sake of completeness, the state-error model for an IMU mounted on a stabilized platform and a 
strapdown IMU are presented in Eqs. 1 and 2, respectively. 
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where  eeeeeee RgRgRgdiag /2// g ,  ]2[ ,lel  ,  ][ ,lel  , and 

more, a third model is constructed by apply g the Lyapunov tra rmation [6] in odel 2. Th

; (3) 

 

,  (4) 

where 

the observables directly measure the position and velocity errors, then, by definition, those state vector 
com

s clear 
that

on-inertial sensors measurement model 

his investigation concentrates on INS error-state observability analysis when three distinct non-inertial 
sens

ata 
can 

mption and neglecting measurement noise is 
pres

. (5) 

The magnetometer observables are composed of the difference between the magnetometer raw data and the 
INS

) 

where  is the misalignment from the true coordinate frame to the compu
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Further in nsfo Eq. 3 to m e 
result is presented in Eq. 4. 
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If 
ponents are observable. The position error is dynamically coupled only with the velocity error, which shows 

that the position error dynamics fails to bring any unmeasured component into the observable subspace. Hence, 
for the sake of simplicity of the observability analysis, the position error component can be neglected [2]. The 
models in Eqs. 1, 2, and 4 without the position error are thereafter called models 1, 2, and 3, respectively. 

Since model 3 relates to model 2 by a Lyapunov transformation that preserves observability, then it i
 model 3 with a set of sensors is fully observable if and only if the same condition holds for model 2 with the 

same set of sensors. 
 
N

 
T
ors aid the INS: GPS, magnetometer, and camera. A measurement model for each one is described next. 
The GPS observables are assumed to directly provide position and velocity errors. In practice, GPS raw d
be post-processed to yield vehicle position and velocity in the WGS84 ellipsoid coordinate frame as in a 

loosely-coupled implementation. Alternatively, the raw data composed of, for example, pseudo-ranges and 
Doppler shift between the receiver and the satellites are employed in a tightly-coupled implementation [11]. The 
GPS observables are then compared to the INS solution to produce a measurement vector of the state-error. 
Receiver clock errors have not been involved in this investigation. 

The GPS measurement equation under the aforementioned assu
ented in Eq. 5. 
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-based local geomagnetic field vector. Considering Pinson’s model [12], the DCM from the body coordinate 
frame to the true local horizontal frame can be approximated by neglecting second order terms as in Eq. 6. 
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θ ted coordinate frame and   is 

misalignment from the computed coordinate frame to the platform coordinate frame. Thus, the magnetometer 
measurement neglecting noise can be approximated by: 
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where  is the raw magnetometer measurement and  is the local geomagnetic fi

the true loc horizontal frame, which is not accessible. The latter is usually obtained from a geomagnetic field 
model using the position solution either computed by th S or by the INS. It is straightforward to check that 

magB
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3ID p
b he IMU and the magnetometer are mounted  a stabilized platform. Moreover, vector θ  can be 

related to the position error represented in the local horizontal frame as in Eq. 8. 
 

ll

E

N

E hR 








0

1
0

hR

hR
RCRθ  













 




0
tan

0

00
1

λ

. (8) 

 
Finally, the magnetometer measurement can be approximated by: 
 

. (9) 

he camera observables are assumed to directly measure the position error and misalignment from the 
computed coordinate frame to the platform coo
this assumption is true if the camera can track a minimum number ) of landmarks at the same time. Thus the 
cam

whe  and  are full rank matrices [14]. 

 
Observability analysis of piece-wise constant systems  

rom the INS error dynamics in Eqs. 1, 2, and, 4, one concludes that it is a time-varying, linear system. The 
he observability Grammian [13]. However, it leads to 

 for the addressed problem. 
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F

most general way to check observability is to compute t
such omplicated mathematical treatment that it is unfeasible c

In the literature, observability has been verified by three main methods. The first is to analyze conditions 
that turn the model into a time-invariant system, e. g. the vehicle is stationary on the Earth’s surface, or to find an 
adequate Lyapunov transformation that also leads to a time-invariant system. Thus the observability can be 
checked by means of rank computation of the observability matrix [13]. This approach was used in [1,6]. 

The second method is applicable to piece-wise constant (PWC) systems. The observability analysis is still 
done by rank computation, but it turns out that it can be greatly simplified when a certain condition holds as is 
presented in Theorem 1[3]. For the INS error model 1, the system can be considered PWC if the specific force is 
piece-wise constant [4]. For the INS error model 2, the system can be approximated by a PWC system if the 
specific force and attitude with respect to the local horizontal frame are piece-wise constant [5]. Finally, for the 
INS error model 3, the PWC system assumption holds if the specific force and IMU angular rate with respect to 
the local horizontal frame and represented in this frame are piece-wise constant. 

The third method has tried to investigate observability without assuming piece-wise constant dynamics 
[6,7,8,9,10]. Since the observability analysis of time-varying systems is not easily applied under general 
conditions, several restrictions can be considered, for example, constant specific forces and angular velocities, or 
a C-shaped path. 

For the sake of simplicity, the second method based on assuming piece-wise constant dynamics has been 
preferred here. It can be shown that under this constraint, an observability analysis with linear algebra concepts 
provides sufficient conditions for full observability that hold for practically all situations of interest. 
Additionally, the approach yields a geometrical insight of the kinematics involved in the observability analysis. 
Let a vehicle move at constant altitude according to three consecutive trajectory segments: 1) towards North; 2) 
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in a C-shaped trajectory; and 3) towards East. The composed movement leads to a time-varying INS error model. 
However, if segment 2 is neglected, then the above INS error models turn into PWC systems. Thus, if full 
observability by the end of segment 3 can be proved, then, by definition, the time-varying system composed of 
the three segments is also fully observable. However, if full observability cannot be claimed from the analysis of 
the first and the third PWC segments, then further analysis including the second segment is needed. For 
practically all the situations of interest, the vehicle can move in such a manner that the INS error model will 
remain constant during certain time intervals. Thus the analysis of just these segments using the aforementioned 
method can provide sufficient conditions for full observability. 

A PWC system is defined as in Eq. 11: 
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where  and matrices , and re constant for all j. Observability can be checked by rank 

analysis of the total observability matrix (TOM), defined as in Eq. 12 for the first r segments [3]: 
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Matrix iQ  is defined as in Eq. 13: 
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here n is the state vector dimension. The computation of the exponential matrices leads to tedious and 
complicated algebraic calculations, but it can be avoide
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where )(rsQ  is the stripped observability matrix (SOM) defined as in Eq. 14: 
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Thus the computation of the exponential matrices c
The validity of Theorem 1 for model 1 with GPS m

rings out a novel condition that should be satisfied. The observability matrix for the j-th segment can be written, 
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easurements was shown in [4]. However, further analysis 

b
r elementary row operations, as in Eq. 15: 
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where the subscript j indicates the specific force at j-th segment and  are properly sized blocks. Notice 

that matrix , which is the cross product matrix of the angular rate v , is time-varying. However, 

nLine

ector li
l    can 

be approximated as a constant for a short term analysis if the terrestrial speed is small enough.  

A vector )( '
jNULL Qx  must satisfy the following conditions: 
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ervability Analysis: IMU mounted on a locally horizontal-stabilized platform in a GPS-aided INS 
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0,2, ll Asp  to be linearly dependent vectors. Thus, if 0,1, ll AspAspAsp   is not aligned with 0,2, ll AspAsp  , 

then full observability is achiev e can note that the three different segments in table I in [4] satisfy the 
conditions in Eq. 17b. 
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Conditions 5, 6, and 7 in Eq. 18b t
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ogether with Theorem A.4 yield 134  0x  as in the previous analysis. 

Furthermore, conditions 3 and 4 restrict  to be simu the local geomagnetic field vector 

 and the vector difference . Thus, if th ned, then the only possible 

solution for  is . Ther null space has e system is fully observable. In 

IMU is m  GPS/Magnetometer-aided 

doe nece
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efore, th

ounted 
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words, if the 
130

, then full observability is achieved if there are at least two segment  the corresponding specific 
e difference 0,1, ll AspAsp   is not aligned with the local geomagnetic field vector lB . 

If the magnetometer is not calibrated, e.g. if the observables have an unknown bias, then the above result 
s not hold and further investigation is ssary. 
 
 

Observability Analysis: IMU mounted on a locally horizontal-stabilized platform in a GPS/Camera-aided 
INS 

 
The observability matrix for the first segment can be written after elementary row and column operations as 

in Eq. 19: 
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where J3 is a full rank matrix as referred to in Eq. 10. Hence 


3333
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00J0

Q

'
0Q  is a full rank matrix, and thus the INS error 

model is fully observable from the onset of the first segment when GPS and camera measurements are available. 
 

Observability Analysis: Strapd
 
By analyzing model 3, one can note that the INS error model dynamics of a strapdown IMU is equal to the 

model of an IMU mounted on a stabilized platform if the IMU angular rate with respect to the local horizontal 

e to increase the dimension of the observable 
s PWC attitude is presented next. 

own IMU in a GPS-aided INS 

frame bl
l  is zero. In such case, the previous results of the observability analysis regarding an IMU mounted on 

a stabilized platform remain valid. Moreover, the INS error model of a strapdown IMU can be also stimulated by 
rotational motion. Thus additional excitation signals are availabl
subspace. The analysis of the scenario in which the IMU undergoe

The observable subspace dimension was first investigated in [5] considering that the IMU position was 
stationary on Earth’s surface though subjected to consecutive rotations. [6] proposed to rotate a stationary IMU 
with a constant angular rate with respect to the local frame and verified that if the angular rate vector satisfies a 
set of conditions, then full observability is achieved. Moreover, [7] analyzed a more general situation that 
circumvents the need for the IMU to remain stationary, although the conditions for full observability are not 
easily grasped geometrically and it is not straightforward to claim whether a specific trajectory segment leads to 
full observability. 

From Eq. 2, the observability matrix of the model 2 for the first two segments can be written after 

elementary row and column operations as in Eq. 20a. Additionally, a vector ))1(( '
sNULL Qx  must satisfy the 

conditions in Eq. 20b. 
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where superscripts b0 and b1 indicate, respectively, the body coordinate frames at an instant in segment 0 and at 
another instant in segment 1. Additionally, it is assumed that the terrestrial speed is such that the local horizontal 
frame remains almost constant between segments 0 and 1. 

If the specific force and the angula

coordinate frame d, which must be true for the validity of Theorem 1, then Theorem A.4 
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together with conditions 3 and 5 in Eq. 20b lead to (a) 1342  0xDx l  and (b) 134  0xDD ll . 

Condition (b) together with Theorem A.6 claim that 4x  must lie in the Euler axis in which a single rotation 

aligns the b0 coordinate frame with the b1 coordinate frame. T

0b

his axis is therea

condition 2 leads to 0

01 )( bb

d 10 bb e . Likewise, 3x

3
0 xb
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2x  

pos

and the specific force 0  to lie in a plane perpendicular to the Euler axis 10 bb e  if 3x  is not 130 . In 

the same way, if  is not 130 , then condition (a) above constrains 2x  and the angular rate of the local 

horizontal frame with respect to the inertial coordinate fram e 

Euler axis 10 bb e . Hence, if either the specific force 0,lsp  or the angular rate of the local horizontal frame 

with respect to the inertial coordinate frame li
l  is not perpendicular to the Euler axis 0b e en the only 

sible solution for x in the null space is that the components 2x , 3x , and 4x  are , 
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130 all uch case

)1('sQ  yields a null space whose dim  is zero. In other words, if either 0,lAsp  or li
l  is erp icular 

e Euler axis 10 bb e , ich oth ise would be a rather particular coinci nce that would not likely endure 

during an usual trajectory, then the INS error model is fully ob vable. 
The foregoing conclusion is in agreement with the results [5], but provides much more general conditions 

to verify observability. The investigation in [5] focused  error model observability of a stationary vehicle 
when the IMU was initially pointing towards North and then subjected to PWC attitude changes. It was 
concluded that IMU rotation about either the North or the local vertical axis yields full observability. However, a 
rotation about the East axis was not enough to achieve full ob va lity. Indeed, from  

notes that for a stationary vehicle (no matter where it points to), 0,lAsp li
l  in the plane spanned by the 

local North tical directions, and a single rotation about the East axis gives the Euler axis 10 bb e  aligned 

with the East. Thus 10 bb e  is simultaneously perpendicular to 0,lAsp  and 
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is not fully observable. 
 

Observability Analysis: Strapdown IMU in a GPS/Magnetometer-aided INS 
 

The observability of a strapdown IMU in a GPS/Magnetometer-aided INS has been investigated here when 

the IMU is rotated such that its angular rate with respect to the lo rizontal frame bl
l  is PWC. If the IMU 

does not rotate with respect to this frame, then, according to model 3 the INS error model is equ at when 
the IMU is mounted tabilized platform. In such case, th e cond ns previously obtained for full 
observability hold. 

ssuming that the s

ho

e conditions of Theorem

n 

p

cto

o

A force 0,lAsp  rema  th

c

d, 

transformed model 3 provides a PWC system if the IMU angular rate with respec
bl

ysis based on the stripped observability matrix cannot be used a priori. On the other hand, it turns out that 
full observability is achieved in the first segment if some non-restrictive conditions are satisfied. Thus the 
analysis hereafter has verified the null space of the total observability matrix in Eq. 12. 

The observability matrix for the first segment after elementary row and column operations is written in Eq. 

21a. Additionally, a )( '
0QxNULL  must satisfy the conditions in Eq. 21b. 

 
 












 


30

*
03

333 ][

 00

B000 l
















3333

333

3333

'
0

][

0I00

00B0

000I

Q

l

                                                                                                             (21a) 


0

                             1b) 










0
*
0

3

1

][

][

B

B

0x

0x


l

l



 134

1

1

0

 














 









2

4

2

13

13

x

x

x





0

3

3

x

0

0

)5

)4

)3

)2

)1

                                                                                       (2

 170



Conditions 3 and 4 claim that if  and  are non-null, then they must be simultaneously aligned with 

. This condition can be mathematically represented as in Eqs. 22. 

 

 
ubstituting Eqs. 22 in condition 5 leads to: 

(23) 

ssuming that the specific force  is not aligned with the IMU angular rate with respect to the local 

horizontal frame , then the local ge agnetic field must be aligned with the specific force 

Eq.  to hold, t elding the trivial solution to the equality. If the local geomagnetic field vecto  

alig ce neither  nor  is , then the o 

conditions 3, 4, in Eq. 21b 
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ned with the specific force 0,lAsp , and sin lB 0,lAsp 130

is 132  0x  and 134  0x , which claims that the system is fully observable 

because the of  null space '
0Q  ha n also be d heorem A.5. 

 that 
magnetom t segm

fic 

orizon

e with respect to the loca

d 

 the alignment of the 
owever, the condition should 

ch the IMU is mounted on a stabilized platform and 
thus

e covariance analysis has been used to verify the observability of the INS error model. A simulated INS 
has been coded in Matlab. Hereafter only the scenarios regarding the novel observability analyses involving use 

sults of the observability analysis for 
other scenarios can be compared with previous results in the literature. 

cova iance matrices are presented, respectively, in Eqs. 24, 25, and 26 with SI units. 

s dimension 0. This result ca checke  using T

The foregoing discussion proved the INS error model of a strapdown IMU aided by GPS and 
eter is fully observable at the firs ent if the following conditions hold: 

 The speci force ( 0,lAsp ) remains constant during the analysis interval; 

 The IMU is rotated in such a manner that its angular rate with respect to the local horizontal frame 

represented in the local h tal frame bl
l  is PWC; 

 Neither the IMU angular rat l horizontal frame bl
l  nor the local geomagnetic 

field lB  is aligne with the specific force 0,lAsp . 

One should note that these are sufficient conditions for full observability because only 15 lines of the 
observability matrix in Eq. 21a have been analyzed. The restriction regarding
aforementioned vectors might be relaxed if more lines were added to the analysis. H
be general enough for every practical scenario. Thus, the analysis of additional lines will not be further pursued 
here. 

 
Observability Analysis: Strapdown IMU in a GPS/Camera-aided INS 

 
This scenario analysis is very similar to the one in whi
 has been omitted here. Indeed, the conclusion is the same: full observability is achieved in the first segment. 
 

Simulations 
 
Th

of a calibrated magnetometer is presented due to the lack of space. The re

All simulations have considered ideal accelerometers and rate-gyros and thus the model noise covariance 
has been set to zero. The initial Kalman filter covariance and GPS and magnetometer measurement noise 

r
 

 101010666444666 
0 101010101010101010101010 diagP  (24) 

 101010 101010  diagGPSR  (25) 

 202020 101010  diagMAGR  (26) 

 
where (.)diag  denotes a diagonal matrix. 

For the sake of simplicity, the local geomagnetic field vector has been assumed to point towards north with 
230. 0 mGauss of intensity, which is the geomagnetic field intensity at the city of São José dos Campos, Brazil. 6
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The first and second scenarios simulate an IMU mounted on a locally horizontal-stabilized p
GPS/Magnetometer-aided INS when the vehicle is subjected, respectively, to trajectories 1 and 2 
which each segment lasts for 20 s. The st
wise in fig. 1 for the first scenario and in

been confirmed by the covariance a
renc ent 2 not in alignment with the local geomagnetic field vector. The 

 ana m is then fully observable at the onset of the second segment and fig. 
1 ca

 
segm

latform in a 
in Table in 

andard deviations of the state estimation error are presented component-
 fig. 2 for the second scenario. One can note that the theoretical results 
nalysis. In the first trajectory, figure 1 shows the effect of the specific have 

force diffe e from segment 1 to segm
foregoing lysis has shown that the syste

n confirm it, because the standard deviations are invariant to the specific force changes at the onset of 
segments 3 and 4. On the other hand, in the second trajectory seen in fig. 2, the specific force difference from

ent 1 to segment 2 is aligned with the local geomagnetic field vector. Thus the system becomes fully 
observable only at the onset of segment 3, which is confirmed in fig. 2 since a set of standard deviations decays 
only after the beginning of segment 3. 

The third scenario simulates a position-stationary strapdown IMU aided by GPS and a magnetometer. The 
IMU has been subjected to a constant angular rate with respect to the local horizontal frame about the east axis. 
The standard deviations of the state estimation error are presented component-wise in fig. 3. The results of the 
observability analysis have been verified again, since all standard deviations decay due to the IMU rotation. 

 
 

Table 1. Trajectories for the first and second scenarios 
 
 

Specific Force Trajectory 1 (m/s²) Trajectory 2 (m/s²) 
Segments 1 2 3 4 1 2 3 4 

NAsp  0 0 0.5 0 0 0.5 0.5 0 

EAsp  0 0.5 0 0.5 0 0 0 0.5 

-g -g 0.5-g 0.5-g -g -g 0.5-g 0.5-g DAsp  

 
 
 

 

 
 
 

Fig. 1. Simulation results for the first scenario 
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Fig. 2. Simulation results for the second scenario 
 

 
 

 
Conclusions 

 
The observability of a linear INS error model has been analyzed with distinct aiding sensors that involve both 

the use of GPS observables only, and usage of GPS combined with either a calibrated magnetometer or a camera 
when the vehicle trajectory yields piece-wise constant error dynamics. The analysis dealt with both a gyro-
stabilized platform undergoing piece-wise constant specific force segments and a strapdown IMU that is also 

 
Fig. 3. Simulation results for the third scenario 
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subjected to piece-wise rotation segments. Original geometric insights related to specific forces, angular rates, 
the geomagnetic field, and image measurements have been derived by extending previous observability results 
and considering fusion with a calibrated magnetometer or a camera for INS aiding. Novel observability results 
were obtained in the case of aiding the INS with magnetometer and GPS. These results have been verified via 
simulation of the covariance of the estimation error. 

 
 
 

Appendices 
 

Theorem A.1: Let  and . If13
3

 0x 13
3

 0y  13][   0yx , then x  and must be aligned. 
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 ,4,3,2,1n  x  and onal. 

Proof: Left to the reader due to lack of space. 

Theorem A.3: Let  and  be two orthogonal vectors, then the set of vectors 

 spans 

Proof: Left to the reader due to lack of space. 

Theorem A.4: Let  and  be two non-collinear vectors. If 
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Proof: The proof is trivial considering Theorems A. 2, and A.3. 

Theorem A.5: Let  and  be two non-collinear vectors. If  and 

satisfy: 
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Proof: Left to the reader due to lack of space.  

Theorem A.6: Let 3x  and b
aD  and c

aD  be the DCMs from the a coordinate frame to, respectively, the 

b and c coordinate frames. If 13)(  0xDD c
a

b
a  holds, then x  lies in the Euler axis in which a single rotation 

aligns the b coordinate frame to the c coordinate frame. 

Proof: The condition can be rewritten as xDxDDx cca . Thus x  is a vector that has the same bab 
representation in the b and c coordinate frames, then x  must lie in the Euler axis in which a single rotation 
rotates the b coordinate frame into alignment with the c coordinate frame. 
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